[go: up one dir, main page]

login
A159885
For n >= 1, let f(2n+1) = (3n+2)/A006519(3n+2) and let f^k be the k-th iteration of f. Then a(n) is the least k such that A000120(f^k(2n+1)) <= A000120(n).
10
2, 1, 2, 6, 1, 1, 2, 3, 3, 1, 1, 4, 1, 1, 2, 8, 2, 3, 3, 39, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 2, 8, 5, 2, 2, 41, 3, 2, 3, 5, 5, 1, 1, 1, 1, 1, 1, 42, 2, 1, 4, 6, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 44, 5, 5, 5, 31, 5, 2, 2, 41, 7, 1, 3, 3, 3, 2, 3, 34, 3, 5, 13, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 42, 8, 1, 2, 4, 1
OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for every n >= 1. It is easy to see that this conjecture is equivalent to the well-known Collatz 3x+1 conjecture.
PROG
(PARI)
A006519(n) = (1<<valuation(n, 2));
f(n) = ((3*((n-1)/2))+2)/A006519((3*((n-1)/2))+2); \\ Defined only for odd n. Cf. A075677.
A159885(n) = { my(w=hammingweight(n), n = (n+n+1)); for(k=1, oo, n = f(n); if(hammingweight(n) <= w, return(k))); }; \\ Antti Karttunen, Sep 22 2018
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Vladimir Shevelev, Apr 25 2009, Apr 27 2009
EXTENSIONS
Edited by N. J. A. Sloane, May 03 2009
a(25) corrected, sequence extended by R. J. Mathar, May 15 2009
STATUS
approved