[go: up one dir, main page]

login
A144871
Square array A(n,k), n>=1, k>=1, read by antidiagonals, where sequence a_k of column k is shadow transform of C(n+k-1,k).
8
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 3, 4, 2, 2, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 2, 1, 1, 1, 1, 1, 3, 4, 6, 2, 2, 4, 2, 1, 1, 1, 2, 1, 4, 1, 1, 1, 4, 4, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 4, 3, 2, 1
OFFSET
1,9
COMMENTS
Row sequences have periods 1, 1, 3, 8, ... given in A144872.
LINKS
Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150. (ps, pdf); see Definition 7 for the shadow transform.
OEIS Wiki, Shadow transform.
N. J. A. Sloane, Transforms.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 2, 1, ...
1, 1, 2, 1, 1, 2, ...
1, 2, 3, 4, 1, 1, ...
1, 2, 1, 1, 3, 3, ...
MAPLE
shadow:= proc(p) proc(n) add(`if`(modp(p(j), n)=0, 1, 0), j=0..n-1)
end end:
f:= proc(k) proc(n) binomial(n+k-1, k) end end:
A:= (n, k)-> shadow(f(k))(n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..20);
MATHEMATICA
shadow[p_] := Function[n, Sum[If[Mod[p[j], n] == 0, 1, 0], {j, 0, n-1}]]; f[k_] := Function[n, Binomial[n+k-1, k]]; a[n_, k_] := shadow[f[k]][n]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 20}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
CROSSREFS
Rows 1+2, 3 give: A000012, A101825.
Periods of the row sequences: A144872.
Cf. A007318.
Sequence in context: A095827 A193582 A091887 * A066799 A238900 A037832
KEYWORD
nonn,tabl,look
AUTHOR
Alois P. Heinz, Sep 23 2008
STATUS
approved