OFFSET
1,9
COMMENTS
Row sequences have periods 1, 1, 3, 8, ... given in A144872.
LINKS
Alois P. Heinz, Antidiagonals n = 1..141, flattened
Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150. (ps, pdf); see Definition 7 for the shadow transform.
OEIS Wiki, Shadow transform.
N. J. A. Sloane, Transforms.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 2, 1, ...
1, 1, 2, 1, 1, 2, ...
1, 2, 3, 4, 1, 1, ...
1, 2, 1, 1, 3, 3, ...
MAPLE
shadow:= proc(p) proc(n) add(`if`(modp(p(j), n)=0, 1, 0), j=0..n-1)
end end:
f:= proc(k) proc(n) binomial(n+k-1, k) end end:
A:= (n, k)-> shadow(f(k))(n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..20);
MATHEMATICA
shadow[p_] := Function[n, Sum[If[Mod[p[j], n] == 0, 1, 0], {j, 0, n-1}]]; f[k_] := Function[n, Binomial[n+k-1, k]]; a[n_, k_] := shadow[f[k]][n]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 20}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
AUTHOR
Alois P. Heinz, Sep 23 2008
STATUS
approved