[go: up one dir, main page]

login
A144870
Shadow transform of C(n+8,9) = A000582(n+8).
2
1, 1, 1, 1, 4, 1, 2, 1, 1, 5, 9, 1, 9, 3, 1, 2, 9, 1, 9, 6, 2, 12, 9, 1, 8, 13, 1, 4, 9, 6, 9, 2, 8, 16, 9, 1, 9, 13, 9, 7, 9, 3, 9, 18, 1, 13, 9, 2, 4, 12, 8, 14, 9, 1, 37, 4, 8, 13, 9, 8, 9, 16, 1, 2, 38, 11, 9, 20, 7, 16, 9, 1, 9, 12, 13, 14, 21, 16, 9, 12, 1, 13, 9, 6, 37, 12, 16, 20, 9, 8, 22, 17
OFFSET
1,5
LINKS
Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150; see Definition 7 for the shadow transform.
N. J. A. Sloane, Transforms.
MAPLE
shadow:= proc(p) proc(n) local j; add (`if` (modp(p(j), n)=0, 1, 0), j=0..n-1) end end: f:= proc(k) proc(n) binomial (n+k-1, k) end end: a:= n-> shadow (f(9))(n): seq (a(n), n=1..100);
CROSSREFS
9th column of A144871. Cf. A007318.
Sequence in context: A232631 A153094 A370050 * A370211 A256252 A247004
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 23 2008
STATUS
approved