[go: up one dir, main page]

login
A144257
Weight array of A086270.
4
1, 2, 0, 3, 1, 0, 4, 2, 1, 0, 5, 3, 2, 1, 0, 6, 4, 3, 2, 1, 0, 7, 5, 4, 3, 2, 1, 0, 8, 6, 5, 4, 3, 2, 1, 0, 9, 7, 6, 5, 4, 3, 2, 1, 0, 10, 8, 7, 6, 5, 4, 3, 2, 1, 0, 11, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 13, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 14, 12, 11, 10, 9, 8, 7, 6, 5
OFFSET
1,2
COMMENTS
For the definition of weight array, see A144112.
From Gary W. Adamson, Feb 18 2010: (Start)
Identical to an infinite lower triangular matrix with (1,2,3,...) in every column but the leftmost column shifted one row upwards, giving:
1;
2, 0;
3, 1, 0;
4, 2, 1, 0;
5, 3, 2, 1, 0;
...
Let the triangle = M. Row sums = A000124; M * [1,2,3,...] = A050407 starting with offset 3: (1, 2, 5, 11, 21, 36, ...); and lim_{n->inf} M^n = the odd-indexed Fibonacci numbers, A001519: (1, 2, 5, 13, ...). (End)
FORMULA
Row 1 = A000027. All subsequent rows are 0 followed by A000027.
EXAMPLE
Northwest corner:
1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
CROSSREFS
Cf. A086270.
Cf. A000124, A050407, A001519. - Gary W. Adamson, Feb 18 2010
Sequence in context: A098862 A003988 A185914 * A257232 A321980 A208544
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 16 2008
STATUS
approved