[go: up one dir, main page]

login
A144112
Weight array W={w(i,j)} of the natural number array A000027.
64
1, 1, 2, 2, 1, 3, 3, 1, 1, 4, 4, 1, 1, 1, 5, 5, 1, 1, 1, 1, 6, 6, 1, 1, 1, 1, 1, 7, 7, 1, 1, 1, 1, 1, 1, 8, 8, 1, 1, 1, 1, 1, 1, 1, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,3
COMMENTS
The lattice lines in the first quadrant (including the x and y axes) cut the plane into unit squares. Suppose a weight w(i,j) is assigned to the square that has as upper right corner the point (i,j). Let s(m,n) be the sum of the weights w(i,j) for 1<=i<=m, 1<=j<=n. We call the array W={w(i,j)} the weight array of the array S={s(m,n)} and S the accumulation array of W. For the case at hand, S is the array of natural numbers having the following antidiagonals: (1), then (2,3), then (4,5,6), then (7,8,9,10) and so on.
Contribution from Clark Kimberling, Sep 14 2008: (Start)
In general, the weight array W of an arbitrary rectangular array S={s(i,j): i>=1, j>=1} is defined in two steps:
(1) extend s by defining s(i,j)=0 if i=0 or j=0;
(2) then w(m,n)=s(m,n)+s(m-1,n-1)-s(m,n-1)-s(m-1,n) for m>=1, n>=1. (End)
LINKS
Stefano Spezia, Table of n, a(n) for n = 1..11325, (first 150 antidiagonals, flattened).
FORMULA
Row 1: 1 followed by A000027.
Row n: n followed by A000012, for n>1.
G.f.: x*y*(1 - (1 + x)*y + (1 - x + x^2)*y^2)/((1 - x)^2*(1 - y)^2). - Stefano Spezia, Oct 01 2023
EXAMPLE
From Clark Kimberling, Jan 31 2011: (Start)
Northwest corner:
1 1 2 3 4 5
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1.
so that the accumulation array has corner:
1...2...4...7...11...16
3...5...8...12..17...23
6...9...13..18..24...31
10..14..19..25..32...40
15..20..26..33..41...50.
s(2,4)=1+1+2+3+2+1+1+1=12. (End)
MATHEMATICA
Array[Append[PadRight[{#}, #, 1], #+1]&, 15, 0] (* Paolo Xausa, Dec 21 2023 *)
CROSSREFS
Sequence in context: A267409 A104469 A372437 * A178568 A357814 A104660
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 11 2008
STATUS
approved