[go: up one dir, main page]

login
A133604
Elements of A005282 that are also the sum of a pair of not necessarily distinct elements of A005282.
2
2, 4, 8, 21, 66, 97, 204, 565, 662, 775, 970, 1821, 2780, 6374, 8730, 8942, 10898, 24596, 55307, 67189, 79047, 84345, 164868, 231694, 233570, 234619, 271511, 298414, 433973, 474668, 475800, 567408, 829129, 839728, 889285, 1394240
OFFSET
1,1
COMMENTS
A005282 is the sequence of smallest numbers such that the pairwise sums of not necessarily distinct elements are all distinct.
Conjecture: 2, 4 and 8 are the only terms n such that n = 2*A005282(k) for some k.
LINKS
EXAMPLE
A005282(3) = 4 + 4 = 8 = A005282(4), hence 8 is in the sequence.
A005282(10) = 81, A005282(12) = 123. 81 + 123 = 204 = A005282(15), hence 204 is in the sequence.
PROG
(Python)
from itertools import count, islice
def A133604_gen(): # generator of terms
aset2, alist = set(), []
for k in count(1):
bset2 = {r:=k<<1}
if r not in aset2:
for d in alist:
if (m:=d+k) in aset2:
break
bset2.add(m)
else:
if k in aset2:
yield k
alist.append(k)
aset2.update(bset2)
A133604_list = list(islice(A133604_gen(), 30)) # Chai Wah Wu, Sep 11 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Sep 18 2007
STATUS
approved