OFFSET
1,2
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1).
FORMULA
Equals A133080 * A133566 * A000045, where A133080 and A133566 are infinite lower triangular matrices and the Fibonacci sequence as a vector (previous definition).
For odd-indexed terms, a(n) = F(n+1). For even-indexed terms, a(n) = 2*a(n-1).
a(n) = (2^(-2-n)*((1-sqrt(5))^n*(-5+sqrt(5)) - (-1-sqrt(5))^n*(-3+sqrt(5)) - (-1+sqrt(5))^n*(3+sqrt(5)) + (1+sqrt(5))^n*(5+sqrt(5))))/sqrt(5). - Colin Barker, Mar 28 2016
EXAMPLE
a(5) = F(6) = 8.
a(6) = 2*a(5) = 2*8 = 16.
MAPLE
MATHEMATICA
CoefficientList[Series[(1 + 2 x)/((x^2 - x - 1) (x^2 + x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 21 2015 *)
LinearRecurrence[{0, 3, 0, -1}, {1, 2, 3, 6}, 40] (* Harvey P. Dale, Dec 10 2017 *)
PROG
(PARI) {a(n) = if( n%2, fibonacci(n+1), 2*fibonacci(n))}; /* Michael Somos, Jun 20 2015 */
(PARI) Vec(x*(1+2*x)/((x^2-x-1)*(x^2+x-1)) + O(x^50)) \\ Colin Barker, Mar 28 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Sep 18 2007
EXTENSIONS
New definition and A-number in previous definition corrected by R. J. Mathar, Jun 20 2015
STATUS
approved