[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133586
Expansion of x*(1+2*x)/( (x^2-x-1)*(x^2+x-1) ).
2
1, 2, 3, 6, 8, 16, 21, 42, 55, 110, 144, 288, 377, 754, 987, 1974, 2584, 5168, 6765, 13530, 17711, 35422, 46368, 92736, 121393, 242786, 317811, 635622, 832040, 1664080, 2178309, 4356618, 5702887, 11405774, 14930352, 29860704, 39088169, 78176338, 102334155
OFFSET
1,2
COMMENTS
For n>1 A133585(n) + a(n) = A000032(n+1).
FORMULA
Equals A133080 * A133566 * A000045, where A133080 and A133566 are infinite lower triangular matrices and the Fibonacci sequence as a vector (previous definition).
For odd-indexed terms, a(n) = F(n+1). For even-indexed terms, a(n) = 2*a(n-1).
For n>1 A133585(n) + a(n) = A000032(n+1).
a(n) = A147600(n) + 2*A147600(n-1). - R. J. Mathar, Jun 20 2015
a(n) = (2^(-2-n)*((1-sqrt(5))^n*(-5+sqrt(5)) - (-1-sqrt(5))^n*(-3+sqrt(5)) - (-1+sqrt(5))^n*(3+sqrt(5)) + (1+sqrt(5))^n*(5+sqrt(5))))/sqrt(5). - Colin Barker, Mar 28 2016
EXAMPLE
a(5) = F(6) = 8.
a(6) = 2*a(5) = 2*8 = 16.
MAPLE
A133586aux := proc(n, k)
add(A133080(n, j)*A133566(j, k), j=k..n) ;
end proc:
A000045 := proc(n)
combinat[fibonacci](n) ;
end proc:
A133586 := proc(n)
add(A133586aux(n, j)*A000045(j), j=0..n) ;
end proc: # R. J. Mathar, Jun 20 2015
MATHEMATICA
CoefficientList[Series[(1 + 2 x)/((x^2 - x - 1) (x^2 + x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 21 2015 *)
LinearRecurrence[{0, 3, 0, -1}, {1, 2, 3, 6}, 40] (* Harvey P. Dale, Dec 10 2017 *)
PROG
(PARI) {a(n) = if( n%2, fibonacci(n+1), 2*fibonacci(n))}; /* Michael Somos, Jun 20 2015 */
(PARI) Vec(x*(1+2*x)/((x^2-x-1)*(x^2+x-1)) + O(x^50)) \\ Colin Barker, Mar 28 2016
CROSSREFS
Cf. A001906 (bisection), A025169 (bisection), A000032, A133586.
Sequence in context: A174021 A267007 A091070 * A141348 A334269 A029867
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Sep 18 2007
EXTENSIONS
New definition and A-number in previous definition corrected by R. J. Mathar, Jun 20 2015
STATUS
approved