[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133221
A001147 with each term repeated.
7
1, 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945, 10395, 10395, 135135, 135135, 2027025, 2027025, 34459425, 34459425, 654729075, 654729075, 13749310575, 13749310575, 316234143225, 316234143225, 7905853580625, 7905853580625, 213458046676875, 213458046676875
OFFSET
0,5
COMMENTS
Normally such sequences are excluded from the OEIS, but I have made an exception for this one because so many variants of it have occurred in recent submissions.
For n>=2, a(n) = product of odd positive integers <=(n-1). - Jaroslav Krizek, Mar 21 2009
a(n) is, for n>=3, the number of way to choose floor((n-1)/2) disjoint pairs of items from n-1 items. It is then a fortiori the size of the conjugacy class of the reversal permutation [n-1,n-2,n-3,...,3,2,1]=(1 n-1)(2 n-2)(3 n-3)... in the symmetric group on n-1 elements. - Karl-Dieter Crisman, Nov 03 2009
LINKS
FORMULA
E.g.f.: x*U(0) where U(k)= 1 + (2*k+1)/(x - x^4/(x^3 + (2*k+2)*(2*k+3)/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 25 2012
G.f.: 1+x*G(0), where G(k)= 1 + x*(2*k+1)/(1 - x/(x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
a(n) = (2*floor(n/2)-1)!! = (n-1-(n mod 2))!!. - Alois P. Heinz, Sep 24 2024
MATHEMATICA
f[x_] := E^(x^2/2) + Sqrt[Pi/2]*Erfi[x/Sqrt[2]]; CoefficientList[ Series[f[x], {x, 0, 29}], x]*Range[0, 29]! (* Jean-François Alcover, Sep 25 2012, after Sergei N. Gladkovskii *)
Table[(n - 1 - Mod[n, 2])!!, {n, 0, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
Table[((2 n + (-1)^n - 3)/2)!!, {n, 0, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
PROG
(Sage)
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
def A133221(n): return Gauss_factorial(n-1, 2)
[A133221(n) for n in (0..29)] # Peter Luschny, Oct 01 2012
(PARI) a(n) = my(k = (2*n + (-1)^n - 3)/2); prod(i=0, (k-1)\2, k - 2*i) \\ Iain Fox, Dec 31 2017
CROSSREFS
Appears in A161736. - Johannes W. Meijer, Jun 18 2009
Sequence in context: A217858 A185275 A055634 * A232097 A353584 A110096
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 13 2007
STATUS
approved