[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133225
Largest prime <= 2^((n+1)/2).
2
2, 2, 3, 5, 7, 11, 13, 19, 31, 43, 61, 89, 127, 181, 251, 359, 509, 719, 1021, 1447, 2039, 2887, 4093, 5791, 8191, 11579, 16381, 23167, 32749, 46337, 65521, 92681, 131071, 185363, 262139, 370723, 524287, 741431, 1048573, 1482907, 2097143, 2965819
OFFSET
1,1
COMMENTS
If one is trying to decide whether an n+1 digit binary number is prime, this is the largest prime for which one needs to test divisibility. For example a six digit number like 110101 must be below 64, so only primes up to 7 are needed to test divisibility. Compare with sequence A132153.
LINKS
FORMULA
a(n) = A007917[A017910(n+1)]. - R. J. Mathar
MAPLE
seq(prevprime(floor(2^((n+1)*1/2))+1), n=1..40); # Emeric Deutsch
A017910 := proc(n) floor(2^(n/2)) ; end: A007917 := proc(n) prevprime(n+1) ; end: A133225 := proc(n) A007917(A017910(n+1)) ; end: seq(A133225(n), n=1..60) ; # R. J. Mathar
MATHEMATICA
PrevPrim[n_] := Block[{k = n}, While[ !PrimeQ@k, k-- ]; k]; f[n_] := PrevPrim@ Floor@ Sqrt[2^(n + 1)]; Array[f, 42] (* Robert G. Wilson v *)
Table[Prime[PrimePi[2^((n + 1)/2)]], {n, 1, 50}] (* Stefan Steinerberger *)
lp[n_]:=Module[{c=2^((n+1)/2)}, If[PrimeQ[c], c, NextPrime[c, -1]]]; Array[lp, 50] (* Harvey P. Dale, Aug 25 2013 *)
CROSSREFS
Cf. A132153.
Sequence in context: A316075 A322429 A039894 * A240487 A066889 A214040
KEYWORD
nonn
AUTHOR
Anthony C Robin, Jan 03 2008
EXTENSIONS
STATUS
approved