[go: up one dir, main page]

login
A132049
Numerator of 2*n*A000111(n-1)/A000111(n): approximations of Pi, using Euler (up/down) numbers.
10
2, 4, 3, 16, 25, 192, 427, 4352, 12465, 158720, 555731, 8491008, 817115, 626311168, 2990414715, 60920233984, 329655706465, 7555152347136, 45692713833379, 232711080902656, 7777794952988025, 217865914337460224
OFFSET
1,1
COMMENTS
The denominators are given in A132050.
a(n)/n = 2, 2, 1, 4, 5, 32, 61, 544, ... are integers for n<=19. a(20)/20 = 58177770225664/5. - Paul Curtz, Mar 25 2013, Apr 04 2013
REFERENCES
J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 31. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.
LINKS
Leonhard Euler, On the sums of series of reciprocals, (Presented to the St. Petersburg Academy on December 5, 1735), arXiv:math/0506415 [math.HO], 2005-2008.
Wolfdieter Lang, Rationals and some values
Wikipedia, Bernoulli number
FORMULA
a(n)=numerator(r(n)) with the rationals r(n)=2*n*e(n-1)/e(n), where e(n)=A000111(n) ("zig-zag" or "up-down" numbers), i.e., e(2*k)=A000364(k) (Euler numbers, secant numbers, "zig"-numbers) and e(2*k+1)=A000182(k+1),k>=0, (tangent numbers, "zag"-numbers). Rationals in lowest terms.
EXAMPLE
Rationals r(n): [3, 16/5, 25/8, 192/61, 427/136, 4352/1385, 12465/3968, 158720/50521, ...].
MAPLE
S := proc(n, k) option remember;
if k=0 then `if`(n=0, 1, 0) else S(n, k-1)+S(n-1, n-k) fi end:
R := n -> 2*n*S(n-1, n-1)/S(n, n);
A132049 := n -> numer(R(n)); A132050 := n -> denom(R(n));
seq(A132049(i), i=3..22); # Peter Luschny, Aug 04 2011
MATHEMATICA
e[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)*(2^(n+1) - 1)*BernoulliB[n+1])/(n+1)]]; r[n_] := 2*n*(e[n-1]/e[n]); a[n_] := Numerator[r[n]]; Table[a[n], {n, 3, 22}] (* Jean-François Alcover, Mar 18 2013 *)
PROG
(Python)
from itertools import islice, count, accumulate
from fractions import Fraction
def A132049_gen(): # generator of terms
yield 2
blist = (0, 1)
for n in count(2):
yield Fraction(2*n*blist[-1], (blist:=tuple(accumulate(reversed(blist), initial=0)))[-1]).numerator
A132049_list = list(islice(A132049_gen(), 40)) # Chai Wah Wu, Jun 09-11 2022
CROSSREFS
Cf. triangle A008281 (main diagonal give zig-zag numbers A000111), A223925.
Sequence in context: A329050 A053124 A242500 * A229213 A356063 A071970
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang Sep 14 2007
EXTENSIONS
Entries confirmed by N. J. A. Sloane, May 10 2012
More explicit definition from M. F. Hasler, Apr 03 2013
a(1) and a(2) prepended by Paul Curtz, Apr 04 2013
STATUS
approved