[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136554
G.f.: A(x) = Sum_{n>=0} log( (1 + x)*(1 + 2^n*x) )^n / n!.
0
1, 3, 10, 82, 2304, 232088, 81639942, 99425060368, 421915147527984, 6313762292901492960, 337457827116687464134048, 65175276571204939272971781496, 45944813538624773942727094008288680
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} C(2^k, k)*C(2^k, n-k).
G.f.: A(x) = Sum_{n>=0} C(2^n,n) * x^n * (1+x)^(2^n).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 10*x^2 + 82*x^3 + 2304*x^4 + 232088*x^5 +...;
A(x) = 1 + log((1+x)*(1+2*x)) + log((1+x)*(1+4*x))^2/2! + log((1+x)*(1+8*x))^3/3! + log((1+x)*(1+16*x))^4/4! +...
Surprisingly, this sum yields a series in x with only integer coefficients.
PROG
(PARI) {a(n)=polcoeff(sum(i=0, n, log((1+x)*(1+2^i*x)+x*O(x^n))^i/i!), n)}
(PARI) {a(n)=sum(k=0, n, binomial(2^k, k)*binomial(2^k, n-k))}
CROSSREFS
Sequence in context: A262259 A203492 A320258 * A359970 A341848 A136505
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2008, Jan 07 2008
STATUS
approved