[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136555
Square array, read by antidiagonals, where T(n,k) = binomial(2^k + n-1, k).
16
1, 1, 1, 1, 2, 3, 1, 3, 6, 35, 1, 4, 10, 56, 1365, 1, 5, 15, 84, 1820, 169911, 1, 6, 21, 120, 2380, 201376, 67945521, 1, 7, 28, 165, 3060, 237336, 74974368, 89356415775, 1, 8, 36, 220, 3876, 278256, 82598880, 94525795200, 396861704798625, 1, 9, 45, 286, 4845, 324632, 90858768, 99949406400, 409663695276000, 6098989894499557055
OFFSET
0,5
COMMENTS
Let vector R_{n} equal row n of this array; then R_{n+1} = P * R_{n} for n>=0, where triangle P = A132625 such that row n+1 of P = row n of P^(2^n) with appended '1' for n>=0.
FORMULA
G.f. for row n: Sum_{i>=0} (1 + 2^i*x)^(n-1) * log(1 + 2^i*x)^i / i!.
From G. C. Greubel, Mar 14 2021: (Start)
For the square array:
T(n, n) = A060690(n).
T(n+1, n) = A132683(n), T(n+2, n) = A132684(n).
T(2*n+1, n) = A132685(n), T(2*n, n) = A132686(n).
T(3*n+2, n) = A132689(n), T(3*n+1, n) = A132688(n), T(3*n, n) = A132687(n).
For the number triangle:
t(n, k) = T(n-k, k) = binomial(2^k + n - k -1, k).
Sum_{k=0..n} t(n,k) = Sum_{k=0..n} T(n-k, k) = A136557(n). (End)
EXAMPLE
Square array begins:
1, 1, 3, 35, 1365, 169911, 67945521, 89356415775, ... A136556;
1, 2, 6, 56, 1820, 201376, 74974368, 94525795200, ... A014070;
1, 3, 10, 84, 2380, 237336, 82598880, 99949406400, ... A136505;
1, 4, 15, 120, 3060, 278256, 90858768, 105637584000, ... A136506;
1, 5, 21, 165, 3876, 324632, 99795696, 111600996000, ... ;
1, 6, 28, 220, 4845, 376992, 109453344, 117850651776, ... ;
1, 7, 36, 286, 5985, 435897, 119877472, 124397910208, ... ;
1, 8, 45, 364, 7315, 501942, 131115985, 131254487936, ... ;
...
Form column vector R_{n} out of row n of this array;
then row n+1 can be generated from row n by:
R_{n+1} = P * R_{n} for n>=0,
where triangular matrix P = A132625 begins:
1;
1, 1;
2, 1, 1;
14, 4, 1, 1;
336, 60, 8, 1, 1;
25836, 2960, 248, 16, 1, 1;
6251504, 454072, 24800, 1008, 32, 1, 1; ...
where row n+1 of P = row n of P^(2^n) with appended '1' for n>=0.
MAPLE
A136555:= (n, k) -> binomial(2^k +n-k-1, k); seq(seq(A136555(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 14 2021
MATHEMATICA
Table[Binomial[2^k +n-k-1, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 14 2021 *)
PROG
(PARI) T(n, k)=binomial(2^k+n-1, k)
(PARI) /* Coefficient of x^k in g.f. of row n: */ T(n, k)=polcoeff(sum(i=0, k, (1+2^i*x+x*O(x^k))^(n-1)*log((1+2^i*x)+x*O(x^k))^i/i!), k)
(Sage) flatten([[binomial(2^k +n-k-1, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 14 2021
(Magma) [Binomial(2^k +n-k-1, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 14 2021
CROSSREFS
Diagonals: A060690, A132683, A132684.
Cf. A136557 (antidiagonal sums).
Cf. A132625.
Sequence in context: A271702 A292915 A271700 * A343627 A188107 A174014
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jan 07 2008
STATUS
approved