[go: up one dir, main page]

login
A136446
Numbers n such that some subset of the numbers { 1 < d < n : d divides n } adds up to n.
9
12, 18, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 84, 90, 96, 100, 102, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246
OFFSET
1,1
COMMENTS
This is a subset of the pseudoperfect numbers A005835 and thus non-deficient (A023196), but in view of the definition actually abundant numbers (A005101). Sequence A122036 lists odd abundant numbers (A005231) which are not in this sequence. So far, 351351 is the only one we know. (As of today, no odd weird (A006037: abundant but not pseudoperfect) number is known.) - M. F. Hasler, Apr 13 2008
This sequence contains infinitely many odd elements: any proper multiple of any pseudoperfect number is in the sequence, so odd proper multiples of odd pseudoperfect numbers are in the sequence. The first such is 2835 = 3 * 945 (which is in the b-file). - Franklin T. Adams-Watters, Jun 18 2009
A211111(a(n)) > 1. - Reinhard Zumkeller, Apr 04 2012
REFERENCES
Mladen Vassilev, Two theorems concerning divisors, Bull. Number Theory Related Topics 12 (1988), pp. 10-19.
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..24491 (confirmed by R. J. Mathar, Mar 20 2011).
MAPLE
isA136446a := proc(s, n) if n in s then return true; elif add(i, i=s) < n then return false; elif nops(s) = 1 then is(op(1, s)=n) ; else sl := sort(convert(s, list), `>`) ; for i from 1 to nops(sl) do m := op(i, sl) ; if n -m = 0 then return true; end if ; if n-m > 0 then sr := [op(i+1..nops(sl), sl)] ; if procname(convert(sr, set), n-m) then return true; end if; end if; end do; return false; end if; end proc:
isA136446 := proc(n) isA136446a( numtheory[divisors](n) minus {1, n}, n) ; end proc:
for n from 1 to 400 do if isA136446(n) then printf("%d, ", n) ; end if; end do ; # R. J. Mathar, Mar 20 2011
MATHEMATICA
okQ[n_] := Module[{d}, If[PrimeQ[n], False, d = Most[Rest[Divisors[n]]]; MemberQ[Plus @@@ Subsets[d], n]]]; Select[Range[2, 246], okQ]
(* T. D. Noe, Jul 24 2012 *)
PROG
(PARI)
N=72 \\ up to this value
vv=vector(N);
{ for(n=2, N,
if ( isprime(n), next() );
d=divisors(n);
d=vector(#d-2, j, d[j+1]); \\ not n, not 1
for (k=1, (1<<#d)-1, \\ all subsets
t=vecextract(d, k);
if ( n==sum(j=1, #t, t[j]),
vv[n] += 1; ); ); ); }
for (j=1, #vv, if (vv[j]>0, print1(j, ", "))) \\ A005835 (after correction)
(PARI) is_A136446(n, d=divisors(n))={#d>2 && is_A005835(n, d[2..-2])} \\ Replaced old code not conforming to current PARI syntax. - M. F. Hasler, Jul 28 2016
for( n=1, 10^4, is_A136446(n) && print1(n", ")) \\ M. F. Hasler, Apr 13 2008
(Haskell)
a136446 n = a136446_list !! (n-1)
a136446_list = map (+ 1) $ findIndices (> 1) a211111_list
-- Reinhard Zumkeller, Apr 04 2012
(Sage)
def isa(s, n): # After R. J. Mathar's Maple code
if n in s: return True
if sum(s) < n: return False
if len(s) == 1: return s[0] == n
for i in srange(len(s)-1, -1, -1) :
d = n - s[i]
if d == 0: return True
if d > 0:
if isa(s[i+1:], d): return True
return False
isA136446 = lambda n : isa(divisors(n)[1:-1], n)
[n for n in (1..246) if isA136446(n)]
# Peter Luschny, Jul 23 2012
CROSSREFS
See A005835 (allowing for divisor 1).
Sequence in context: A297925 A341099 A175837 * A074726 A341475 A091013
KEYWORD
nonn
AUTHOR
Joerg Arndt, Apr 06 2008
EXTENSIONS
More terms from M. F. Hasler, Apr 13 2008
STATUS
approved