[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123946
a(3n) = floor(43*2^n/28) - 1, a(3n+1) = a(3n) + 3*2^(n-3), a(3n+2) = floor(17*2^n/7 - 6/7) for n>=3.
1
1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 23, 29, 38, 48, 60, 76, 97, 121, 154, 195, 243, 310, 392, 488, 620, 785, 977, 1242, 1571, 1955, 2486, 3144, 3912, 4972, 6289, 7825, 9946, 12579, 15651, 19894, 25160, 31304, 39788, 50321, 62609, 79578, 100643, 125219
OFFSET
0,3
COMMENTS
Theorem 3 of Dubickas implies that infinitely many terms of this sequence are composite. - Charles R Greathouse IV, Feb 04 2016
REFERENCES
Artūras Dubickas, Prime and composite integers close to powers of a number, Monatsh. Math. 158:3 (2009), pp. 271-284.
D. E. Knuth, The Art of Computer Programming Vol. 3, Addison-Wesley, Reading, MA, 1998, p. 206, Exercise 14 (F. K. Hwang).
LINKS
R. L. Graham, Exercise 14
FORMULA
Empirical g.f.: (2*x^18-x^17-x^16+x^15+x^14-x^13+2*x^12-x^11-x^9+x^7+x^4-x^3+x^2+1) / ((x-1)*(2*x^3-1)*(x^6+x^3+1)). - Colin Barker, Nov 21 2015
MAPLE
a[0]:=1: a[1]:=1: a[2]:=2: a[3]:=2: a[4]:=3: a[5]:=4: a[6]:=5: a[7]:=7: a[8]:=9: for n from 3 to 19 do a[3*n]:=floor(43*2^n/28)-1: a[3*n+1]:=a[3*n]+3*2^(n-3): a[3*n+2]:=floor(17*2^n/7-6/7) od: seq(a[n], n=0..59);
MATHEMATICA
a[n_]:= a[n] = With[{k = Floor[n/3]}, If[Mod[n, 3]==0, Floor[(43/28)*2^k] - 1, If[Mod[n, 3]==1, Floor[(43/28)*2^k] -1 +3*2^(k-3), Floor[(17/7)*2^k - 6/7]]]]; Join[{1, 1, 2, 2, 3, 4, 5, 7, 9}, Table[a[n], {n, 9, 50}]] (* G. C. Greubel, Aug 05 2019 *)
PROG
(PARI) vector(50, n, n--; k=n\3; if(n<9, if(n%3==0, 3*2^k\2-(k>0), if(n%3==2, 2*(17*2^k\14)+(k==2), 53*2^k\28-(k>2))), if(n%3==0, floor(43*2^k/28)-1, if(n%3==1, floor(43*2^k/28)-1+3*2^(k-3), floor(17*2^k/7-6/7))))) \\ Altug Alkan, Nov 22 2015
(Magma)
a:= func< n | (n mod 3 eq 0) select Floor((43/28)*2^Floor(n/3)) - 1 else (n mod 3 eq 1) select Floor((43/28)*2^Floor(n/3)) -1 +3*2^(Floor(n/3)-3) else Floor((17/7)*2^Floor(n/3) - 6/7) >;
[1, 1, 2, 2, 3, 4, 5, 7, 9] cat [a(n): n in [9..50]]; // G. C. Greubel, Aug 05 2019
(Sage)
def a(n):
if (mod(n, 3)==0): return floor((43/28)*2^floor(n/3)) - 1
elif (mod(n, 3)==1): return floor((43/28)*2^floor(n/3)) -1 +3*2^(floor(n/3)-3)
else: return floor((17/7)*2^floor(n/3) - 6/7)
[1, 1, 2, 2, 3, 4, 5, 7, 9]+[a(n) for n in (9..50)] # G. C. Greubel, Aug 05 2019
(GAP)
a:= function(n)
if (n mod 3 =0) then return Int((43/28)*2^Int(n/3)) - 1;
elif (n mod 3 =1) then return Int((43/28)*2^Int(n/3)) -1 +3*2^(Int(n/3)-3);
else return Int((17/7)*2^Int(n/3) - 6/7);
fi;
end;
Concatenation([1, 1, 2, 2, 3, 4, 5, 7, 9], List([9..50], n-> a(n) )); # G. C. Greubel, Aug 05 2019
CROSSREFS
Sequence in context: A052816 A122130 A003073 * A002569 A129528 A364159
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Oct 25 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 07 2006
STATUS
approved