[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052816
G.f.: (1+x)*Product_{m>0} (1 + x^m).
5
1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 22, 27, 33, 40, 49, 59, 70, 84, 100, 118, 140, 165, 193, 226, 264, 307, 357, 414, 478, 552, 636, 730, 838, 960, 1097, 1253, 1428, 1624, 1846, 2095, 2373, 2686, 3036, 3426, 3864, 4352, 4894, 5500, 6174, 6922, 7755, 8679, 9702
OFFSET
0,2
COMMENTS
Number of partitions of n into distinct parts where there are 2 sorts of ones. Also number of partitions of n where all parts except possibly the largest are odd, see example. [Joerg Arndt, Jun 09 2013]
FORMULA
G.f.: exp( sum(j>=1, (-1)^(j+1) * x^j * (x^j-2)/(x^j-1)/j ) ).
a(n) = A000009(n) + A000009(n-1). - Vladeta Jovovic, Jun 23 2003
a(n) ~ exp(sqrt(n/3)*Pi) / (2*3^(1/4)*n^(3/4)) * (1 - (3*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (55/128 - 45/(128*Pi^2) + 265*Pi^2/13824)/n). - Vaclav Kotesovec, Nov 04 2016
EXAMPLE
From Joerg Arndt, Jun 09 2013: (Start)
There are a(12)=27 partitions of 12 where all parts except possibly the largest are odd:
01: [ 1 1 1 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 1 1 1 1 2 ]
03: [ 1 1 1 1 1 1 1 1 1 3 ]
04: [ 1 1 1 1 1 1 1 1 4 ]
05: [ 1 1 1 1 1 1 1 5 ]
06: [ 1 1 1 1 1 1 3 3 ]
07: [ 1 1 1 1 1 1 6 ]
08: [ 1 1 1 1 1 3 4 ]
09: [ 1 1 1 1 1 7 ]
10: [ 1 1 1 1 3 5 ]
11: [ 1 1 1 1 8 ]
12: [ 1 1 1 3 3 3 ]
13: [ 1 1 1 3 6 ]
14: [ 1 1 1 9 ]
15: [ 1 1 3 3 4 ]
16: [ 1 1 3 7 ]
17: [ 1 1 5 5 ]
18: [ 1 1 10 ]
19: [ 1 3 3 5 ]
20: [ 1 3 8 ]
21: [ 1 5 6 ]
22: [ 1 11 ]
23: [ 3 3 3 3 ]
24: [ 3 3 6 ]
25: [ 3 9 ]
26: [ 5 7 ]
27: [ 12 ]
(End)
MAPLE
spec := [S, {B=Sequence(Z, 1 <= card), C=Union(B, Z), S=PowerSet(C)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
a[n_] := PartitionsQ[n] + PartitionsQ[n-1];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 11 2022, after Vladeta Jovovic *)
CROSSREFS
Cf. A000009.
Sequence in context: A266748 A304883 A280663 * A122130 A003073 A123946
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Vladeta Jovovic, Jun 23 2003
STATUS
approved