[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that A056109(k) is a square.
3

%I #31 Jul 19 2024 08:22:18

%S 0,6,88,1230,17136,238678,3324360,46302366,644908768,8982420390,

%T 125108976696,1742543253358,24270496570320,338044408731126,

%U 4708351225665448,65578872750585150,913395867282526656,12721963269204788038,177194089901584505880

%N Numbers k such that A056109(k) is a square.

%C All terms are even. Sequence is infinite. Corresponding squares are s^2 with s = 1, 11, 153, 2131, 29681, 413403, 5757961, 80198051, 1117014753, 15558008491, 216695104121, 3018173449203, 42037733184721, ... (see A122769).

%C Numbers m such that the distance from (0,0,-1) to (m,m,m) in R^3 is an integer. - _James R. Buddenhagen_, Jun 15 2013

%C Also n such that the sum of the pentagonal numbers P(n) and P(n+1) is equal to the sum of two consecutive triangular numbers. - _Colin Barker_, Dec 07 2014

%H Colin Barker, <a href="/A122770/b122770.txt">Table of n, a(n) for n = 0..874</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15,-15,1).

%F a(n) = ((b+1)*(7+4*b)^n - (b-1)*(7-4*b)^n - 2)/6, where b = sqrt(3).

%F a(n) = 14*a(n-1) - a(n-2) + 4, with a(0)=0, a(1)=6.

%F a(n) = 2*A011916(n) = (A001353(n+1)^2 - A001075(n)^2)/2. - _Richard R. Forberg_, Aug 26 2013

%F a(n) = 15*a(n-1)-15*a(n-2)+a(n-3). - _Colin Barker_, Dec 07 2014

%F G.f.: 2*x*(x-3) / ((x-1)*(x^2-14*x+1)). - _Colin Barker_, Dec 07 2014

%t LinearRecurrence[{15, -15, 1}, {0, 6, 88}, 25] (* _Paolo Xausa_, Jul 19 2024 *)

%o (PARI) concat(0, Vec(2*x*(x-3) / ((x-1)*(x^2-14*x+1)) + O(x^100))) \\ _Colin Barker_, Dec 07 2014

%Y Cf. A001353, A001075, A011916, A056109, A122769, A251730.

%K nonn,easy

%O 0,2

%A _Zak Seidov_, Oct 21 2006

%E More terms from _Colin Barker_, Dec 07 2014