[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122770
Numbers k such that A056109(k) is a square.
3
0, 6, 88, 1230, 17136, 238678, 3324360, 46302366, 644908768, 8982420390, 125108976696, 1742543253358, 24270496570320, 338044408731126, 4708351225665448, 65578872750585150, 913395867282526656, 12721963269204788038, 177194089901584505880
OFFSET
0,2
COMMENTS
All terms are even. Sequence is infinite. Corresponding squares are s^2 with s = 1, 11, 153, 2131, 29681, 413403, 5757961, 80198051, 1117014753, 15558008491, 216695104121, 3018173449203, 42037733184721, ... (see A122769).
Numbers m such that the distance from (0,0,-1) to (m,m,m) in R^3 is an integer. - James R. Buddenhagen, Jun 15 2013
Also n such that the sum of the pentagonal numbers P(n) and P(n+1) is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 07 2014
FORMULA
a(n) = ((b+1)*(7+4*b)^n - (b-1)*(7-4*b)^n - 2)/6, where b = sqrt(3).
a(n) = 14*a(n-1) - a(n-2) + 4, with a(0)=0, a(1)=6.
a(n) = 2*A011916(n) = (A001353(n+1)^2 - A001075(n)^2)/2. - Richard R. Forberg, Aug 26 2013
a(n) = 15*a(n-1)-15*a(n-2)+a(n-3). - Colin Barker, Dec 07 2014
G.f.: 2*x*(x-3) / ((x-1)*(x^2-14*x+1)). - Colin Barker, Dec 07 2014
MATHEMATICA
LinearRecurrence[{15, -15, 1}, {0, 6, 88}, 25] (* Paolo Xausa, Jul 19 2024 *)
PROG
(PARI) concat(0, Vec(2*x*(x-3) / ((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, Dec 07 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Oct 21 2006
EXTENSIONS
More terms from Colin Barker, Dec 07 2014
STATUS
approved