[go: up one dir, main page]

login
A126813
Ramanujan numbers (A000594) read mod 8.
2
1, 0, 4, 0, 6, 0, 0, 0, 5, 0, 4, 0, 6, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 7, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 4, 0, 6, 0, 0, 0, 1, 0, 0, 0, 6, 0, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 1, 0, 4, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 6, 0, 0, 0, 0
OFFSET
1,3
LINKS
R. P. Bambah, S. Chowla and H. Gupta, A congruence property of Ramanujan’s function tau(n), Bull. Amer. Math. Soc. 53 (1947), 766-767.
H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
FORMULA
For all odd n, a(n) = sigma(n) mod 8 = A105827(n). - Michel Marcus, Apr 25 2016
MATHEMATICA
Mod[RamanujanTau@ #, 8] &@ Range@ 120 (* Michael De Vlieger, Apr 25 2016 *)
PROG
(PARI) A126813(n) = (ramanujantau(n)%8); \\ Antti Karttunen, Nov 26 2017
(PARI) a(n)=my(e=valuation(n, 2)); ramanujantau(2^e)*sigma(n>>e)%8 \\ Charles R Greathouse IV, Sep 09 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 25 2007
STATUS
approved