[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113947
Number of non-equivalent n-fold branched coverings of the projective plane with two cyclic branch points.
3
1, 2, 3, 8, 16, 64, 264, 1580, 10648, 84320, 750380, 7455312, 81566928, 974988768, 12636692720, 176505029160, 2642791002368, 42224138928712, 716984262871596, 12893605560786944
OFFSET
1,2
LINKS
J. H. Kwak, A. Mednykh and V. Liskovets, Enumeration of branched coverings of nonorientable surfaces with cyclic branch points, SIAM J. Discrete Math., Vol. 19, No. 2 (2005), 388-398.
FORMULA
a(n) = (1/n)*Sum_{k|n} gcd(2, n/k)*phi(n/k)^2*(n/k)^(k-1) * Sum_{i=0..k-1} i!*(k-i-1)! where phi(n) is the Euler function A000010.
a(n) ~ 2*n!/n^2. - Vaclav Kotesovec, Oct 27 2024
MATHEMATICA
a[n_] := 1/n DivisorSum[n, GCD[2, n/#]*EulerPhi[n/#]^2*(n/#)^(#-1) Sum[i! * (#-i- 1)!, {i, 0, #-1}]&]; Array[a, 20] (* Jean-François Alcover, Oct 05 2016 *)
CROSSREFS
Sequence in context: A331679 A277346 A005648 * A102008 A200083 A210701
KEYWORD
nonn
AUTHOR
Valery A. Liskovets, Nov 10 2005
STATUS
approved