[go: up one dir, main page]

login
Column 1 of triangle A113711, in which row n forms a polynomial in y=2*k that generates diagonal n as k=0,1,2,... for n >= 0.
4

%I #30 Jun 03 2019 23:51:29

%S 1,3,11,51,291,1955,14947,127203,1188067,12063459,132253411,

%T 1557096163,19600652003,262792435427,3740012173027,56328120653539,

%U 895281283880675,14978332471744227,263154416079230691,4844530248867534563

%N Column 1 of triangle A113711, in which row n forms a polynomial in y=2*k that generates diagonal n as k=0,1,2,... for n >= 0.

%F a(n) = Sum_{j=0..n} A113711(n,j)*2^j.

%o (PARI) getmnk(m, n, k) = {if (n<k || k<0, return (0)); if (k==0, return (1)); if (! m[n, k], if (n==k, m[n,k] = 1, m[n, k] = sum(j=0, n-k, getmnk(m, n-k, j)*(2*k)^j))); m[n,k];}

%o lista(nn) = {my(m=matrix(nn, nn)); for(n=1, nn, for (k=1, n, m[n, k] = getmnk(m, n, k););); vector(nn, n, m[n, 1]);} \\ _Michel Marcus_, Jun 03 2019

%Y Cf. A113711, A113713 (column 2), A113714 (column 3), A113715 (row sums).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 08 2005