[go: up one dir, main page]

login
A113712
Column 1 of triangle A113711, in which row n forms a polynomial in y=2*k that generates diagonal n as k=0,1,2,... for n >= 0.
4
1, 3, 11, 51, 291, 1955, 14947, 127203, 1188067, 12063459, 132253411, 1557096163, 19600652003, 262792435427, 3740012173027, 56328120653539, 895281283880675, 14978332471744227, 263154416079230691, 4844530248867534563
OFFSET
0,2
FORMULA
a(n) = Sum_{j=0..n} A113711(n,j)*2^j.
PROG
(PARI) getmnk(m, n, k) = {if (n<k || k<0, return (0)); if (k==0, return (1)); if (! m[n, k], if (n==k, m[n, k] = 1, m[n, k] = sum(j=0, n-k, getmnk(m, n-k, j)*(2*k)^j))); m[n, k]; }
lista(nn) = {my(m=matrix(nn, nn)); for(n=1, nn, for (k=1, n, m[n, k] = getmnk(m, n, k); ); ); vector(nn, n, m[n, 1]); } \\ Michel Marcus, Jun 03 2019
CROSSREFS
Cf. A113711, A113713 (column 2), A113714 (column 3), A113715 (row sums).
Sequence in context: A020043 A357830 A184819 * A056199 A230008 A007047
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 08 2005
STATUS
approved