[go: up one dir, main page]

login
A110174
Number of solutions 0<k<n to the equation phi(n) = phi(k) + phi(n-k), where phi is Euler's totient function.
3
0, 0, 2, 1, 0, 0, 0, 1, 2, 2, 0, 1, 0, 4, 4, 1, 0, 2, 0, 5, 4, 4, 0, 3, 4, 4, 4, 7, 0, 0, 0, 1, 6, 2, 2, 3, 0, 6, 2, 7, 0, 2, 0, 9, 6, 4, 0, 3, 0, 4, 6, 9, 0, 4, 2, 9, 4, 2, 0, 1, 0, 4, 4, 1, 4, 4, 0, 9, 4, 4, 0, 5, 0, 4, 8, 9, 2, 6, 0, 7, 0, 2, 0, 3, 4, 4, 8, 9, 0, 2, 0, 11, 8, 4, 0, 3, 0, 2, 6, 9, 0, 6, 0
OFFSET
1,3
LINKS
MATHEMATICA
a[n_] := Select[Range[n-1], EulerPhi[n]==EulerPhi[n-# ]+EulerPhi[ # ]&]; Table[Length[a[n]], {n, 150}]
PROG
(PARI) A110174(n) = { my(ph=eulerphi(n)); sum(k=1, n-1, (ph == (eulerphi(k)+eulerphi(n-k)))); }; \\ Antti Karttunen, Feb 20 2023
CROSSREFS
Cf. A110173 (least k such that phi(n) = phi(k) + phi(n-k)).
Cf. also A110177.
Sequence in context: A340655 A035172 A344858 * A022909 A292136 A032239
KEYWORD
nonn,look
AUTHOR
T. D. Noe, Jul 15 2005
STATUS
approved