[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118005
a(n) = ((-1)^n*5^(n+1) + 9^(n+1))/14.
1
1, 4, 61, 424, 4441, 36844, 347221, 3046864, 27812401, 248358484, 2244991981, 20156099704, 181649037961, 1633620638524, 14708689262341, 132347685782944, 1191281759937121, 10720772899980964, 96490770797094301, 868397863687520584, 7815676140619325881, 70340608428415729804, 633067860041532583861, 5697598819444838176624
OFFSET
0,2
COMMENTS
Number of black cells after n iterations of Haferman's carpet.
LINKS
Eric Weisstein's World of Mathematics, Haferman Carpet
FORMULA
From Colin Barker, Jun 08 2013: (Start)
a(n) = 4*a(n-1) + 45*a(n-2).
G.f.: 1 / ((1+5*x)*(1-9*x)). (End)
E.g.f.: (1/14)*(5*exp(-5*x) + 9*exp(9*x)). - G. C. Greubel, Nov 12 2024
MATHEMATICA
LinearRecurrence[{4, 45}, {1, 4}, 41] (* G. C. Greubel, Nov 12 2024 *)
PROG
(PARI) Vec(1 / ((1 + 5*x)*(1 - 9*x)) + O(x^40)) \\ Colin Barker, Feb 26 2020
(Magma) [n le 2 select 4^(n-1) else 4*Self(n-1) +45*Self(n-2): n in [1..41]]; // G. C. Greubel, Nov 12 2024
(Python)
def A118005(n): return (9^(n+1) +(-1)^n*5^(n+1))//14
print([A118005(n) for n in range(41)]) # G. C. Greubel, Nov 12 2024
CROSSREFS
Sequence in context: A158300 A129452 A131014 * A132064 A378553 A229666
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 09 2006
STATUS
approved