[go: up one dir, main page]

login
A117507
Numerators of partial sums of the Brun series divided by 4.
2
2, 23, 3919, 1400972, 1332221503, 2440266733544, 9013120937567806, 47710925260763230958, 503649376979113850651329, 5954610779280903922363948937, 114594038963707117577230115067496
OFFSET
1,1
COMMENTS
The Brun series is the sum over reciprocals of the (odd) twin primes (see the mathworld link).
The denominators divided by 5 are given in A117508.
A001359 gives the lesser of the twin primes (offset 1).
A006512 gives the greater of the twin primes (offset 1).
A029707=[2,3,5,7,10,..] gives the indices for the lesser of the (odd) twin primes (offset 0).
The proof that the partial sums of the Brun series have numerators divisible by 4 and denominators divisible by 5 can be given by induction.
LINKS
Eric Weisstein's World of Mathematics, Brun's Constant
FORMULA
a(n)=numerator(r(n))/4, with r(n):=sum(1/ltp(k) + 1/(ltp(k)+2),k=1..n), n>=1, with ltp(k):=A001359(k) (lesser twin primes).
EXAMPLE
Rationals 4*A117507(n)/5*A117508(n): 8/15, 92/105, 15676/15015,
5603888/4849845, 5328886012/4360010655,...
CROSSREFS
Sequence in context: A081781 A088734 A087388 * A068656 A030997 A090511
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Apr 13 2006
STATUS
approved