[go: up one dir, main page]

login
A117438
Triangle T(n, k) = binomial(2*n-k, k)*(-4)^(n-k), read by rows.
3
1, -4, 1, 16, -12, 1, -64, 80, -24, 1, 256, -448, 240, -40, 1, -1024, 2304, -1792, 560, -60, 1, 4096, -11264, 11520, -5376, 1120, -84, 1, -16384, 53248, -67584, 42240, -13440, 2016, -112, 1, 65536, -245760, 372736, -292864, 126720, -29568, 3360, -144, 1
OFFSET
0,2
FORMULA
T(n, k) = binomial(2*n-k, k)*(-4)^(n-k).
Sum_{k=0..n} T(n, k) = (-1)^n*(2*n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^n*A117439(n) (upward diagonal sums).
T(n, k) = A117435(2*n-k, k).
EXAMPLE
Triangle begins
1;
-4, 1;
16, -12, 1;
-64, 80, -24, 1;
256, -448, 240, -40, 1;
-1024, 2304, -1792, 560, -60, 1;
4096, -11264, 11520, -5376, 1120, -84, 1;
MATHEMATICA
Table[Binomial[2*n-k, k]*(-4)^(n-k), {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 01 2021 *)
PROG
(Sage) flatten([[binomial(2*n-k, k)*(-4)^(n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 01 2021
CROSSREFS
Sequence in context: A271413 A271262 A292922 * A075499 A367022 A099394
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Mar 16 2006
STATUS
approved