[go: up one dir, main page]

login
A075499
Stirling2 triangle with scaled diagonals (powers of 4).
14
1, 4, 1, 16, 12, 1, 64, 112, 24, 1, 256, 960, 400, 40, 1, 1024, 7936, 5760, 1040, 60, 1, 4096, 64512, 77056, 22400, 2240, 84, 1, 16384, 520192, 989184, 435456, 67200, 4256, 112, 1, 65536, 4177920, 12390400, 7956480, 1779456, 169344, 7392, 144, 1
OFFSET
1,2
COMMENTS
This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(4*z) - 1)*x/4) - 1
Also the inverse Bell transform of the quadruple factorial numbers 4^n*n! (A047053) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015
LINKS
FORMULA
a(n, m) = (4^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*4)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 4m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-4k*x), m >= 1.
E.g.f. for m-th column: (((exp(4x)-1)/4)^m)/m!, m >= 1.
EXAMPLE
[1]; [4,1]; [16,12,1]; ...; p(3,x) = x(16 + 12*x + x^2).
From Andrew Howroyd, Mar 25 2017: (Start)
Triangle starts
* 1
* 4 1
* 16 12 1
* 64 112 24 1
* 256 960 400 40 1
* 1024 7936 5760 1040 60 1
* 4096 64512 77056 22400 2240 84 1
* 16384 520192 989184 435456 67200 4256 112 1
(End)
MATHEMATICA
Table[(4^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
PROG
(Sage) # uses[inverse_bell_transform from A265605]
# Adds a column 1, 0, 0, ... at the left side of the triangle.
multifact_4_4 = lambda n: prod(4*k + 4 for k in (0..n-1))
inverse_bell_matrix(multifact_4_4, 9) # Peter Luschny, Dec 31 2015
(PARI)
for(n=1, 11, for(m=1, n, print1(4^(n - m) * stirling(n, m, 2), ", "); ); print(); ) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
Columns 1-7 are A000302, A016152, A019677, A075907-A075910. Row sums are A004213.
Sequence in context: A271262 A292922 A117438 * A367022 A099394 A269698
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved