Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 17 2023 14:53:31
%S 1,3,15,63,255,1023,4095,16383,65535,262143,1048575,4194303,16777215,
%T 67108863,268435455,1073741823,4294967295,17179869183,68719476735,
%U 274877906943,1099511627775,4398046511103,17592186044415,70368744177663
%N a(n) = 0^n + 4^n - 1.
%C A transform of 4^n under the matrix A103452.
%C The square of the cotangent of the arcsin of 1/(2^n). - Al Hakanson (hawkuu(AT)excite.com), Feb 23 2006
%H Vincenzo Librandi, <a href="/A103454/b103454.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4).
%F G.f.: (1 - 2*x + 4*x^2)/((1-x)*(1-4*x));
%F a(n) = Sum_{k=0..n} A103452(n, k)*4^k;
%F a(n) = Sum_{k=0..n} (2*0^(n-k) - 1)*0^(k*(n-k))4^k.
%F a(n) = A024036(n), n > 0. - _R. J. Mathar_, Aug 30 2008
%F E.g.f.: 1 - exp(x) + exp(4*x). - _G. C. Greubel_, Jun 21 2021
%F a(n) = 5*a(n-1) - 4*a(n-2). - _Wesley Ivan Hurt_, Mar 17 2023
%t Table[Boole[n==0] +4^n -1, {n,0,40}] (* _G. C. Greubel_, Jun 21 2021 *)
%o (Magma) [0^n+4^n-1: n in [0..30]]; // _Vincenzo Librandi_, Jul 02 2011
%o (Sage) [1]+[4^n -1 for n in [1..40]] # _G. C. Greubel_, Jun 21 2021
%Y Cf. A024036, A103452.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Feb 06 2005