[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103454
a(n) = 0^n + 4^n - 1.
3
1, 3, 15, 63, 255, 1023, 4095, 16383, 65535, 262143, 1048575, 4194303, 16777215, 67108863, 268435455, 1073741823, 4294967295, 17179869183, 68719476735, 274877906943, 1099511627775, 4398046511103, 17592186044415, 70368744177663
OFFSET
0,2
COMMENTS
A transform of 4^n under the matrix A103452.
The square of the cotangent of the arcsin of 1/(2^n). - Al Hakanson (hawkuu(AT)excite.com), Feb 23 2006
FORMULA
G.f.: (1 - 2*x + 4*x^2)/((1-x)*(1-4*x));
a(n) = Sum_{k=0..n} A103452(n, k)*4^k;
a(n) = Sum_{k=0..n} (2*0^(n-k) - 1)*0^(k*(n-k))4^k.
a(n) = A024036(n), n > 0. - R. J. Mathar, Aug 30 2008
E.g.f.: 1 - exp(x) + exp(4*x). - G. C. Greubel, Jun 21 2021
a(n) = 5*a(n-1) - 4*a(n-2). - Wesley Ivan Hurt, Mar 17 2023
MATHEMATICA
Table[Boole[n==0] +4^n -1, {n, 0, 40}] (* G. C. Greubel, Jun 21 2021 *)
PROG
(Magma) [0^n+4^n-1: n in [0..30]]; // Vincenzo Librandi, Jul 02 2011
(Sage) [1]+[4^n -1 for n in [1..40]] # G. C. Greubel, Jun 21 2021
CROSSREFS
Sequence in context: A359083 A218236 A218282 * A024036 A111303 A118339
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 06 2005
STATUS
approved