[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102406
Number of Dyck paths of semilength n having no ascents of length 1 that start at an even level.
3
1, 0, 1, 2, 5, 14, 39, 114, 339, 1028, 3163, 9852, 31005, 98436, 314901, 1014070, 3284657, 10694314, 34979667, 114887846, 378750951, 1252865288, 4157150327, 13832926200, 46148704121, 154327715592, 517236429545, 1737102081962, 5845077156189, 19702791805126
OFFSET
0,4
COMMENTS
Number of Łukasiewicz paths of length n having no level steps at an even level. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: a(3)=2 because we have UHD and U(2)DD, where U=(1,1), H=(1,0), D=(1,-1) and U(2)=(1,2). a(n)=A102404(n,0).
Number of Dyck n-paths with no descent of length 1 following an ascent of length 1. [David Scambler, May 11 2012]
FORMULA
G.f.: (1+z+z^2 - sqrt(1-2*z-5*z^2-2*z^3+z^4))/(2*z*(1+z)^2).
(n+1)*a(n) -(n-3)*a(n-1) -(7*n-9)*a(n-2) -(7*n-12)*a(n-3) -n*a(n-4) +(n-4)*a(n-5) = 0. - R. J. Mathar, Jan 04 2017
EXAMPLE
a(3) = 2 because we have UUDUDD and UUUDDD, having no ascents of length 1 that start at an even level.
MAPLE
G:=(1+z+z^2-sqrt(1-2*z-5*z^2-2*z^3+z^4))/2/z/(1+z)^2: Gser:=series(G, z=0, 32): 1, seq(coeff(Gser, z^n), n=1..29);
MATHEMATICA
CoefficientList[Series[(1+x+x^2 -Sqrt[1-2*x-5*x^2-2*x^3+x^4])/(2*x*(1+x)^2), {x, 0, 40}], x] (* G. C. Greubel, Oct 31 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (1+x+x^2 -Sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x*(1+x)^2) )); // G. C. Greubel, Oct 31 2024
(SageMath)
def A102406_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x+x^2 -sqrt(1-2*x-5*x^2-2*x^3+x^4))/(2*x*(1+x)^2) ).list()
A102406_list(30) # G. C. Greubel, Oct 31 2024
CROSSREFS
Sequence in context: A367655 A105641 A027035 * A307754 A151409 A339289
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jan 06 2005
STATUS
approved