# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a107907 Showing 1-1 of 1 %I A107907 #14 Jul 31 2021 15:18:30 %S A107907 3,4,6,7,8,9,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30, %T A107907 31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,52,53,54, %U A107907 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77 %N A107907 Numbers having consecutive zeros or consecutive ones in binary representation. %C A107907 Union of A003754 and A003714, complement of A000975; %C A107907 Also positive integers whose binary expansion has cuts-resistance > 1. For the operation of shortening all runs by 1, cuts-resistance is the number of applications required to reach an empty word. - _Gus Wiseman_, Nov 27 2019 %F A107907 a(A000247(n)) = A000225(n+2); %F A107907 a(A000295(n+2)) = A000079(n+2); %F A107907 a(A000325(n+2)) = A000051(n+2) for n>0. %e A107907 From _Gus Wiseman_, Nov 27 2019: (Start) %e A107907 The sequence of terms together with their binary expansions begins: %e A107907 3: 11 %e A107907 4: 100 %e A107907 6: 110 %e A107907 7: 111 %e A107907 8: 1000 %e A107907 9: 1001 %e A107907 11: 1011 %e A107907 12: 1100 %e A107907 13: 1101 %e A107907 14: 1110 %e A107907 15: 1111 %e A107907 16: 10000 %e A107907 17: 10001 %e A107907 18: 10010 %e A107907 (End) %t A107907 Select[Range[100],MatchQ[IntegerDigits[#,2],{___,x_,x_,___}]&] (* _Gus Wiseman_, Nov 27 2019 *) %t A107907 Select[Range[80],SequenceCount[IntegerDigits[#,2],{x_,x_}]>0&] (* or *) Complement[Range[85],Table[FromDigits[PadRight[{},n,{1,0}],2],{n,7}]] (* _Harvey P. Dale_, Jul 31 2021 *) %Y A107907 Cf. A000120, A000975, A007088, A070939, A107909, A329862. %K A107907 nonn %O A107907 0,1 %A A107907 _Reinhard Zumkeller_, May 28 2005 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE