[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093318
a(n) = number of positive divisors k of n where mu(k) = 1 and mu(n/k) = -1.
1
0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 4, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 4, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 1, 1, 0, 4, 1, 0, 1, 0, 1, 1, 0, 4, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0
OFFSET
1,30
FORMULA
4*a(n) + Sum_{k|n} mu(k)*mu(n/k) = Product_{p|n} e(p, n), where the product is over the distinct primes dividing n; e(p, n) = 2 if p|n but p^2 does not divide n; e(p, n) = 1 if p^2|n but p^3 does not divide n; e(p, n) = 0 if p^3|n.
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, MoebiusMu[#] == 1 && MoebiusMu[n/#] == -1 &]; Array[a, 100] (* Amiram Eldar, Aug 29 2023 *)
PROG
(PARI) A093318(n) = sumdiv(n, d, ((1==moebius(d))&&((-1)==moebius(n/d)))); \\ Antti Karttunen, Jul 27 2017
CROSSREFS
Cf. A008683 (mu).
Sequence in context: A365952 A324803 A320742 * A255329 A365949 A127560
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Apr 26 2004
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 24 2004
STATUS
approved