[go: up one dir, main page]

login
A092419
Let k = n-th nonsquare = A000037(n); then a(n) = smallest prime p such that the Kronecker-Jacobi symbol K(k,p) = -1.
7
3, 2, 2, 7, 5, 3, 7, 2, 5, 2, 3, 13, 3, 5, 2, 3, 2, 5, 3, 7, 3, 2, 5, 2, 11, 7, 3, 5, 7, 2, 2, 3, 11, 7, 3, 5, 2, 3, 2, 11, 3, 5, 3, 2, 5, 2, 7, 7, 3, 5, 5, 2, 13, 2, 3, 5, 3, 7, 2, 3, 2, 13, 3, 5, 5, 3, 2, 7, 2, 5, 11, 3, 5, 2, 11, 2, 3, 5, 5, 3, 7, 2, 3, 2, 7, 3, 7, 5, 3, 2, 2, 5, 5, 3, 11, 11, 2, 5, 2, 3, 7
OFFSET
1,1
COMMENTS
Maple calls K(k,p) the Legendre symbol.
The old entry with this sequence number was a duplicate of A024356.
REFERENCES
H. Cohen, A Course in Computational Number Theory, Springer, 1996 (p. 28 defines the Kronecker-Jacobi symbol).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MAPLE
with(numtheory); f:=proc(n) local M, i, j, k; M:=100000; for i from 1 to M do if legendre(n, ithprime(i)) = -1 then RETURN(ithprime(i)); fi; od; -1; end;
PROG
(PARI) a(n)=my(k=n+(sqrtint(4*n)+1)\2); forprime(p=2, , if(kronecker(k, p)<0, return(p))) \\ Charles R Greathouse IV, Aug 28 2016
CROSSREFS
Cf. A000037. Records: A067073, A070040. See A144294 for another version.
Sequence in context: A237270 A091264 A021760 * A293268 A020835 A244639
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 16 2008, Oct 17 2008. Definition corrected Dec 03 2008.
STATUS
approved