# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a092419 Showing 1-1 of 1 %I A092419 #9 Aug 28 2016 04:12:29 %S A092419 3,2,2,7,5,3,7,2,5,2,3,13,3,5,2,3,2,5,3,7,3,2,5,2,11,7,3,5,7,2,2,3,11, %T A092419 7,3,5,2,3,2,11,3,5,3,2,5,2,7,7,3,5,5,2,13,2,3,5,3,7,2,3,2,13,3,5,5,3, %U A092419 2,7,2,5,11,3,5,2,11,2,3,5,5,3,7,2,3,2,7,3,7,5,3,2,2,5,5,3,11,11,2,5,2,3,7 %N A092419 Let k = n-th nonsquare = A000037(n); then a(n) = smallest prime p such that the Kronecker-Jacobi symbol K(k,p) = -1. %C A092419 Maple calls K(k,p) the Legendre symbol. %C A092419 The old entry with this sequence number was a duplicate of A024356. %D A092419 H. Cohen, A Course in Computational Number Theory, Springer, 1996 (p. 28 defines the Kronecker-Jacobi symbol). %H A092419 Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 %p A092419 with(numtheory); f:=proc(n) local M,i,j,k; M:=100000; for i from 1 to M do if legendre(n,ithprime(i)) = -1 then RETURN(ithprime(i)); fi; od; -1; end; %o A092419 (PARI) a(n)=my(k=n+(sqrtint(4*n)+1)\2); forprime(p=2,, if(kronecker(k,p)<0, return(p))) \\ _Charles R Greathouse IV_, Aug 28 2016 %Y A092419 Cf. A000037. Records: A067073, A070040. See A144294 for another version. %K A092419 nonn %O A092419 1,1 %A A092419 _N. J. A. Sloane_, Oct 16 2008, Oct 17 2008. Definition corrected Dec 03 2008. # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE