[go: up one dir, main page]

login
A092391
a(n) = n + wt(n), where wt(n) = A000120(n) = binary weight of n.
39
0, 2, 3, 5, 5, 7, 8, 10, 9, 11, 12, 14, 14, 16, 17, 19, 17, 19, 20, 22, 22, 24, 25, 27, 26, 28, 29, 31, 31, 33, 34, 36, 33, 35, 36, 38, 38, 40, 41, 43, 42, 44, 45, 47, 47, 49, 50, 52, 50, 52, 53, 55, 55, 57, 58, 60, 59, 61, 62, 64, 64, 66, 67, 69, 65, 67, 68, 70, 70, 72, 73, 75
OFFSET
0,2
LINKS
Reinhard Zumkeller and Donovan Johnson, Table of n, a(n) for n = 0..10000 (terms up to a(1023) from Reinhard Zumkeller)
Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
FORMULA
a(n) = n + A000120(n).
A010062(n+1) = a(A010062(n)).
G.f.: (1/(1 - x))*Sum_{k>=0} (2^k + 1)*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jul 23 2017
MATHEMATICA
Table[n + Total[IntegerDigits[n, 2]], {n, 0, 100}] (* Jean-François Alcover, Sep 03 2013 *)
PROG
(Haskell) a092391 n = n + a000120 n -- Reinhard Zumkeller, May 13 2012
(PARI) A092391(n)=n+hammingweight(n) \\ M. F. Hasler, Oct 05 2013
(Python)
def a(n): return n + bin(n).count("1")
print([a(n) for n in range(72)]) # Michael S. Branicky, May 26 2022
CROSSREFS
A010061 gives the numbers not occurring in this sequence. A228082 gives the terms of this sequence sorted into ascending order, with duplicates removed. A228085(n) gives the number of times n occurs in this sequence.
Sequence in context: A023838 A246795 A089625 * A187322 A335429 A156899
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, May 08 2004
STATUS
approved