[go: up one dir, main page]

login
Non-harmonic primes: the odd primes not in A092101.
6

%I #6 Mar 30 2012 17:22:32

%S 3,7,11,19,29,31,37,43,47,53,59,61,71,83,89,97,101,103,109,127,131,

%T 137,151,163,167,173,181,197,199,211,227,229,233,257,269,271,283,313,

%U 347,353,359,367,373,379,383,389,397,401,409,419,421,433,439,457,463,509,521,523

%N Non-harmonic primes: the odd primes not in A092101.

%C For p = prime(n), Boyd defines Jp to be the set of numbers k such that p divides A001008(k), the numerator of the harmonic number H(k). For harmonic primes, Jp contains only the three numbers p-1, (p-1)p and (p-1)(p+1).

%C Boyd's paper omits 509.

%D A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.

%H David W. Boyd, <a href="http://www.emis.de/journals/EM/expmath/volumes/3/3.html">A p-adic study of the partial sums of the harmonic series</a>, Experimental Math., Vol. 3 (1994), No. 4, 287-302.

%Y Cf. A092101 (harmonic primes), A092103 (size of Jp).

%K nonn

%O 1,1

%A _T. D. Noe_, Feb 20 2004