%I #6 Mar 30 2012 17:22:32
%S 3,7,11,19,29,31,37,43,47,53,59,61,71,83,89,97,101,103,109,127,131,
%T 137,151,163,167,173,181,197,199,211,227,229,233,257,269,271,283,313,
%U 347,353,359,367,373,379,383,389,397,401,409,419,421,433,439,457,463,509,521,523
%N Non-harmonic primes: the odd primes not in A092101.
%C For p = prime(n), Boyd defines Jp to be the set of numbers k such that p divides A001008(k), the numerator of the harmonic number H(k). For harmonic primes, Jp contains only the three numbers p-1, (p-1)p and (p-1)(p+1).
%C Boyd's paper omits 509.
%D A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.
%H David W. Boyd, <a href="http://www.emis.de/journals/EM/expmath/volumes/3/3.html">A p-adic study of the partial sums of the harmonic series</a>, Experimental Math., Vol. 3 (1994), No. 4, 287-302.
%Y Cf. A092101 (harmonic primes), A092103 (size of Jp).
%K nonn
%O 1,1
%A _T. D. Noe_, Feb 20 2004