OFFSET
1,1
COMMENTS
For p = prime(n), Boyd defines Jp to be the set of numbers k such that p divides A001008(k), the numerator of the harmonic number H(k). For harmonic primes, Jp contains only the three numbers p-1, (p-1)p and (p-1)(p+1).
Boyd's paper omits 509.
REFERENCES
A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.
LINKS
David W. Boyd, A p-adic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287-302.
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Feb 20 2004
STATUS
approved