[go: up one dir, main page]

login
A092102
Non-harmonic primes: the odd primes not in A092101.
6
3, 7, 11, 19, 29, 31, 37, 43, 47, 53, 59, 61, 71, 83, 89, 97, 101, 103, 109, 127, 131, 137, 151, 163, 167, 173, 181, 197, 199, 211, 227, 229, 233, 257, 269, 271, 283, 313, 347, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 433, 439, 457, 463, 509, 521, 523
OFFSET
1,1
COMMENTS
For p = prime(n), Boyd defines Jp to be the set of numbers k such that p divides A001008(k), the numerator of the harmonic number H(k). For harmonic primes, Jp contains only the three numbers p-1, (p-1)p and (p-1)(p+1).
Boyd's paper omits 509.
REFERENCES
A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.
LINKS
David W. Boyd, A p-adic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287-302.
CROSSREFS
Cf. A092101 (harmonic primes), A092103 (size of Jp).
Sequence in context: A346912 A276456 A126254 * A158722 A202301 A339974
KEYWORD
nonn
AUTHOR
T. D. Noe, Feb 20 2004
STATUS
approved