[go: up one dir, main page]

login
A090730
a(n) = 22*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 22.
3
2, 22, 482, 10582, 232322, 5100502, 111978722, 2458431382, 53973511682, 1184958825622, 26015120652002, 571147695518422, 12539234180753282, 275292004281053782, 6043884860002429922, 132690174915772404502
OFFSET
0,1
FORMULA
a(n) = p^n + q^n, where p = 11 + 2*sqrt(30) and q = 11 - 2*sqrt(30). - Tanya Khovanova, Feb 06 2007
G.f.: (2-22*x)/(1-22*x+x^2). - Philippe Deléham, Nov 18 2008
a(n) = 2*A077422(n). - R. J. Mathar, Sep 27 2014
MATHEMATICA
a[0] = 2; a[1] = 22; a[n_] := 22a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
LinearRecurrence[{22, -1}, {2, 22}, 20] (* Harvey P. Dale, Mar 07 2018 *)
PROG
(Sage) [lucas_number2(n, 22, 1) for n in range(0, 20)] # Zerinvary Lajos, Jun 26 2008
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 18 2004
STATUS
approved