[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098331
Expansion of 1/sqrt(1 - 2*x + 5*x^2).
14
1, 1, -1, -5, -5, 11, 41, 29, -125, -365, -131, 1409, 3301, -155, -15625, -29485, 16115, 170035, 254525, -309775, -1813055, -2064655, 4617755, 18909175, 14903725, -61552739, -192390589, -81290561, 767919595, 1901796395, 28588201
OFFSET
0,4
COMMENTS
Central coefficients of (1+x-x^2)^n. Binomial transform of 1/sqrt(1+4x^2), or (1,0,-2,0,6,0,-20,...). Binomial transform is A098335. (-1)^nA098331(n) is the inverse binomial transform of (1,0,-2,0,6,0,-20,...).
Hankel transform is 2^n*(-1)^C(n+1,2). Hankel transform of 0,1,1,-1,-5,-5,... is F(n)*(-1)^C(n+2,2)*(2^n+0^n)/2. - Paul Barry, Jan 13 2009
LINKS
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
Eric Weisstein's World of Mathematics, Trinomial Coefficient
FORMULA
E.g.f.: exp(x)*BesselI(0, 2*i*x), i=sqrt(-1);
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*binomial(2k, k)*(-1)^k;
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k)*(-1)^k;
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(k, k/2)*cos(pi*k/2).
D-finite with recurrence: a(0)=a(1)=1, a(n) = ((2n-1)a(n-1)-5(n-1)a(n-2))/n. - T. D. Noe, Oct 19 2005
a(n) = hypergeom([-n/2, 1/2-n/2], [1], -4). - Peter Luschny, Sep 18 2014
a(n) ~ 5^(n/2 + 1/4) * cos((Pi*n - arctan(1/2) - n*arctan(4/3))/2) / sqrt(Pi*n). - Vaclav Kotesovec, Oct 31 2017
a(n) = (sqrt(5))^n*P(n,1/sqrt(5)), where P(n,x) is the Legendre polynomial of degree n. Note the general result (sqrt(4*m+1))^n*P(n, 1/sqrt(4*m+1)) = Sum_{k = 0..floor(n/2)} C(n,2*k)*C(2*k,k)(-m)^k due to Catalan. - Peter Bala, Mar 18 2018
G.f.: 1/(1 - x + 2*x^2/(1 - x + x^2/(1 - x + x^2/(1 - x + x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2021
From Peter Bala, Feb 08 2022: (Start)
G.f.: A(x) = Sum_{n >= 0} (-1)^n*binomial(2*n,n)*x^(2*n)/(1 - x)^(2*n+1).
a(n)^2 = Sum_{k = 0..n} (-1)^k*5^(n-k)*binomial(2*k,k)*binomial(n,k)* binomial(n+k,k).
Sum_{n >= 0} (-1)^n*binomial(2*n,n)^2 * x^n/(1 - 5*x)^(2*n+1) = 1 + x + x^2 + 25*x^3 + 25*x^4 + 121*x^5 + ... is the g.f. of a(n)^2.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all prime p and positive integers n and k. (End)
MAPLE
A098331 := n -> hypergeom([-n/2, 1/2-n/2], [1], -4);
seq(round(evalf(A098331(n), 99)), n=0..30); # Peter Luschny, Sep 18 2014
f:= gfun:-rectoproc({(5*n+5)*a(n)+(-3-2*n)*a(n+1)+(n+2)*a(n+2), a(0) = 1, a(1) = 1}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Jan 30 2018
MATHEMATICA
a=b=1; Join[{a, b}, Table[c=((2n-1)b-5(n-1)a)/n; a=b; b=c; c, {n, 2, 30}]] (Noe)
CoefficientList[Series[1/Sqrt[1-2x+5x^2], {x, 0, 40}], x] (* Harvey P. Dale, Aug 17 2015 *)
PROG
(PARI) my(x='x+O('x^99)); Vec(1/(1-2*x+5*x^2)^(1/2)) \\ Altug Alkan, Mar 18 2018
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Sep 03 2004
EXTENSIONS
Corrected by T. D. Noe, Oct 19 2005
STATUS
approved