[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098229
a(n)=6*c(n,1) where n runs through the 3-smooth numbers (see comment).
0
0, 3, 2, 3, 5, 3, 2, 5, 3, 5, 5, 2, 3, 5, 5, 5, 3, 5, 2, 5, 5, 3, 5, 5, 5, 5, 2, 3, 5, 5, 5, 5, 5, 3, 5, 5, 2, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 3, 2, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 2, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 2, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 2, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
1,2
COMMENTS
If n is a 3-smooth number, (i.e. of form 2^i*3^j for i,j>=0) the value c(n,k)={(n^(2k)-1)*B(2k)} is independent of k where {x} denotes the fractional part of x and B(k) is the k-th Bernoulli's number.
FORMULA
a(1)=0; for k>0, a(2^k)=3 a(3^k)=2; for i>0 and j>0 a(2^i*3^j)=5
PROG
(PARI) m=7; for(n=1, 1000000, if(gcd(n, 6^100)==n, print1(6*frac((n^(2*m)-1)*bernfrac(2*m)), ", ")))
CROSSREFS
Cf. A003586.
Sequence in context: A240225 A283893 A112427 * A346388 A128151 A071166
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 25 2004
STATUS
approved