[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098227
Number of primes with exactly n decimal digits which have repeated digits.
5
0, 1, 46, 551, 5834, 58667, 552131, 5006366, 44940852, 404204977, 3663002302, 33489857205, 308457624821, 2858876213963, 26639628671867, 249393770611256, 2344318816620308, 22116397130086627, 209317712988603747
OFFSET
1,3
COMMENTS
Above n = 9, a(n) = A006879(n) because above 10 there must be repeated digits. At n = 10 the sum of digits 0+1+2+3+4+5+6+7+8+9=45 is divisible by 3, so no primes with 10 distinct decimal digits exist, all primes must have repeated digits.
EXAMPLE
Above n = 9 a(n) = A006879(n) because above 10 there must be a repetition. At n = 10 the sum of digits 0+1+2+3+4+5+6+7+8+9=45 is divisible by 3, so no primes with 10 distinct decimal digits exist.
MATHEMATICA
Table[Count[Prime@ Range[If[# == 0, 1, # + 1] &@ PrimePi[10^n], PrimePi[10^(n + 1) - 1]], p_ /; Total@ Boole@ Map[# > 1 &, DigitCount@ p] > 0], {n, 0, 6}] (* Michael De Vlieger, Mar 26 2017 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Oct 25 2004
STATUS
approved