[go: up one dir, main page]

login
A094738
Number of connected 6-element multiantichains on a labeled n-set.
10
0, 1, 1, 26, 702, 34746, 2873097, 317812783, 36594544008, 3875472781976, 368569834860663, 31872207293370225, 2555189550184175334, 193269748160593198186, 13986349926952570806549, 978803975916211424325827
OFFSET
0,4
LINKS
FORMULA
E.g.f.: (1/6!)*(exp(63*x) - 30*exp(47*x) + 120*exp(39*x) + 60*exp(35*x) + 60*exp(33*x) - 18*exp(32*x) - 309*exp(31*x) - 720*exp(29*x) + 810*exp(27*x) + 120*exp(26*x) + 480*exp(25*x) + 480*exp(24*x) - 1200*exp(23*x) - 720*exp(22*x) - 240*exp(21*x) - 900*exp(20*x) + 3540*exp(19*x) + 615*exp(18*x) + 780*exp(17*x) + 585*exp(16*x) - 4295*exp(15*x) - 6870*exp(14*x) + 6210*exp(13*x) + 10020*exp(12*x) - 15960*exp(11*x) - 6510*exp(10*x) + 21960*exp(9*x) + 11610*exp(8*x) - 32715*exp(7*x) + 31185*exp(6*x) - 23670*exp(5*x) - 51405*exp(4*x) + 132334*exp(3*x) - 112152*exp(2*x) + 44304*exp(x) - 7560).
MAPLE
E:= (1/6!)*(exp(63*x) - 30*exp(47*x) + 120*exp(39*x) + 60*exp(35*x) + 60*exp(33*x) - 18*exp(32*x) - 309*exp(31*x) - 720*exp(29*x) + 810*exp(27*x) + 120*exp(26*x) + 480*exp(25*x) + 480*exp(24*x) - 1200*exp(23*x) - 720*exp(22*x) - 240*exp(21*x) - 900*exp(20*x) + 3540*exp(19*x) + 615*exp(18*x) + 780*exp(17*x) + 585*exp(16*x) - 4295*exp(15*x) - 6870*exp(14*x) + 6210*exp(13*x) + 10020*exp(12*x) - 15960*exp(11*x) - 6510*exp(10*x) + 21960*exp(9*x) + 11610*exp(8*x) - 32715*exp(7*x) + 31185*exp(6*x) - 23670*exp(5*x) - 51405*exp(4*x) + 132334*exp(3*x) - 112152*exp(2*x) + 44304*exp(x) - 7560):
S:= series(E, x, 21):
seq(coeff(S, x, i), i=0..20); # Robert Israel, Jul 14 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Goran Kilibarda, Vladeta Jovovic, May 24 2004
STATUS
approved