[go: up one dir, main page]

login
A082863
Number of distinct prime factors of n^2-1.
5
1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 4, 2, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3, 4, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 2, 4, 3, 2, 4, 3, 3, 4, 3, 4, 3, 4, 2, 3, 3, 3, 4, 4, 3, 4, 2, 3, 2, 4, 3, 4, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3
OFFSET
2,3
COMMENTS
This is a very slowly growing sequence - by n=100000 the maximum value is 8.
If n is in A014574 then a(n) = 2. - Robert Israel, Aug 05 2014
FORMULA
a(n) = A001221((n-1)*(n+1)).
a(n) = A001221(n-1) + A001221(n+1) + ((-1)^n - 1)/2. - Robert Israel, Aug 05 2014
EXAMPLE
a(11)=3 because (11-1)*(11+1)=10*12=2^3*3*5, which has 3 distinct prime factors, namely 2,3 and 5.
MAPLE
A082863 := proc(n)
A001221(n^2-1) ;
end proc: # R. J. Mathar, Aug 05 2014
# alternative:
A082863:= n -> nops(numtheory:-factorset(n^2-1)):
seq(A082863(n), n=1..100); # Robert Israel, Aug 05 2014
MATHEMATICA
Table[PrimeNu[n^2-1], {n, 2, 100}] (* Harvey P. Dale, Jul 05 2011 *)
PROG
(PARI) for (n=2, 100, print1(omega((n-1)*(n+1))", "))
CROSSREFS
Cf. A001221, A014574, A219017 (greedy inverse).
Sequence in context: A366441 A179938 A081412 * A278950 A029411 A165093
KEYWORD
nonn
AUTHOR
Jon Perry, May 24 2003
STATUS
approved