OFFSET
1,1
COMMENTS
Values of k such that the Motzkin number A001006(k) is even. Values of k such that the number of restricted hexagonal polyominoes with k+1 cells (A002212) is even.
Or union of sequences {2*A079523(n)+k}, k=0,1. A generalization see in comment to A161639. - Vladimir Shevelev, Jun 15 2009
Or intersection of sequences A121539 and {A121539(n)-1}. A generalization see in comment to A161890. - Vladimir Shevelev, Jul 03 2009
The asymptotic density of this sequence is 1/3 (Rowland and Yassawi, 2015; Burns, 2016). - Amiram Eldar, Jan 30 2021
Numbers of the form 4^k*(2*n-1)-2 and 4^k*(2*n-1)-1 where n and k are positive integers. - Michael Somos, Oct 22 2021
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from G. C. Greubel)
Jean-Paul Allouche, Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence, Journal de théorie des nombres de Bordeaux, Vol. 27, No. 2 (2015), pp. 375-388; arXiv preprint, arXiv:1401.3727 [math.NT], 2014.
Jean-Paul Allouche, André Arnold, Jean Berstel, Srećko Brlek, William Jockusch, Simon Plouffe and Bruce E. Sagan, A sequence related to that of Thue-Morse, Discrete Math., Vol. 139, No. 1-3 (1995), pp. 455-461.
Rob Burns, Asymptotic density of Motzkin numbers modulo small primes, arXiv:1611.04910 [math.NT], 2016.
Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, Journal de Théorie des Nombres de Bordeaux, Vol. 27, No. 1 (2015), pp. 245-288.
FORMULA
MATHEMATICA
(* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; Select[Range[200], Mod[m[#], 2] == 0 &] (* Jean-François Alcover, Jul 10 2013 *)
Select[Range[200], EvenQ@Hypergeometric2F1[3/2, -#, 3, 4]&] (* Vladimir Reshetnikov, Nov 02 2015 *)
PROG
(PARI) is(n)=valuation(bitor(n, 1)+1, 2)%2==0 \\ Charles R Greathouse IV, Mar 07 2013
(Python)
from itertools import count, islice
def A081706_gen(): # generator of terms
for n in count(0):
if (n&-n).bit_length()&1:
m = n<<2
yield m-2
yield m-1
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Emeric Deutsch and Bruce E. Sagan, Apr 02 2003
STATUS
approved