OFFSET
1,2
COMMENTS
It appears that the sequence can be calculated by any of the following three methods: (1) Start with 1 and repeatedly replace (simultaneously) all 1's with 1,3,1 and all 3's with 1,3,3,3,1. [Equivalently, trajectory of 1 under the morphism 1 -> 1,3,1; 3 -> 1,3,3,3,1. - N. J. A. Sloane, Nov 03 2019] (2) a(n)= A026490(2n). (3) Replace each 2 in A026465 (run lengths in Thue-Morse) with 3.
Length of n-th run of 1's in the Feigenbaum sequence A035263 = 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, .... - Philippe Deléham, Apr 18 2004
Another construction. Let S_0 = 1, and let S_n be obtained by applying the morphism 1 -> 3, 3 -> 113 to S_{n-1}. The sequence is the concatenation S_0, S_1, S_2, ... - D. R. Hofstadter, Oct 23 2014
a(n+1) is the number of times n appears in A003160. - John Keith, Dec 31 2020
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
D. R. Hofstadter, Anti-Fibonacci numbers, Oct 23 2014.
FORMULA
MATHEMATICA
Position[ Nest[ Flatten[# /. {0 -> {0, 2, 1}, 1 -> {0}, 2 -> {0}}]&, {0}, 8], 0] // Flatten // Differences // Prepend[#, 1]& (* Jean-François Alcover, Mar 14 2014, after Philippe Deléham *)
nsteps=7; Flatten[SubstitutionSystem[{1->{3}, 3->{1, 1, 3}}, {1}, nsteps]] (* Paolo Xausa, Aug 12 2022, using D. R. Hofstadter's construction *)
PROG
(Haskell) -- following Deléham
import Data.List (group)
a080426 n = a080426_list !! n
a080426_list = map length $ filter ((== 1) . head) $ group a035263_list
-- Reinhard Zumkeller, Oct 27 2014
(PARI)
A080426(nmax) = my(a=[1], s=[[1, 3, 1], [], [1, 3, 3, 3, 1]]); while(length(a)<nmax, a=concat(vecextract(s, a))); a[1..nmax];
A080426(100) \\ Paolo Xausa, Sep 14 2022, using method (1) from comments
(Python)
def A080426(nmax):
a, s = "1", "".maketrans({"1":"131", "3":"13331"})
while len(a) < nmax: a = a.translate(s)
return list(map(int, a[:nmax]))
print(A080426(100)) # Paolo Xausa, Aug 30 2022, using method (1) from comments
CROSSREFS
KEYWORD
nonn
AUTHOR
John W. Layman, Feb 18 2003
STATUS
approved