OFFSET
0,4
REFERENCES
J. Derbyshire, "Prime Obsession: Bernhard Riemann and the Greatest Unsolved...", Henry Press, 2003, footnote on page 366.
J. V. Uspenski, "Introduction to Mathematical Probability", McGraw Hill, 1937, p. 278.
LINKS
Eric Weisstein's World of Mathematics, Uniform Sum Distribution.
FORMULA
T(n,k) = (-1)^k*n!*(n+1-k)^k/k!; k-th coefficient of n-th row for n >= 0 and k >= 0.
E.g.f.: 1/(exp(y*x)-x).
EXAMPLE
Expected number of uniform random choices of X from interval[0,1] so that their sum exceeds 1 is e/0!. So that sum exceeds 2: (e^2-e)/1!. So that sum exceeds 3: (2e^3-4e^2+e)/2!.
Triangle begins:
1,
1, -1,
2, -4, 1,
6, -18, 12, -1,
24, -96, 108, -32, 1,
...
MATHEMATICA
PROG
(Sage)
def A089087_row(n):
R.<x> = ZZ[]
P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n))
return [(-1)^i*P[n-i+1] for i in (0..n)]
for n in (0..5): print(A089087_row(n)) # Peter Luschny, May 03 2013
CROSSREFS
KEYWORD
AUTHOR
Brian Dunfield (brian.dunfield(AT)sympatico.ca), Dec 04 2003
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Dec 05 2003
STATUS
approved