[go: up one dir, main page]

login
A088000
a(n) is the sum of the palindromic divisors of n.
8
1, 3, 4, 7, 6, 12, 8, 15, 13, 8, 12, 16, 1, 10, 9, 15, 1, 21, 1, 12, 11, 36, 1, 24, 6, 3, 13, 14, 1, 17, 1, 15, 48, 3, 13, 25, 1, 3, 4, 20, 1, 19, 1, 84, 18, 3, 1, 24, 8, 8, 4, 7, 1, 21, 72, 22, 4, 3, 1, 21, 1, 3, 20, 15, 6, 144, 1, 7, 4, 15, 1, 33, 1, 3, 9, 7, 96, 12, 1, 20, 13, 3, 1, 23, 6, 3
OFFSET
1,2
LINKS
EXAMPLE
n=14: a(14)=1+2+7=10;
n=101: a(101)=1+101=102;
MAPLE
A088000 := proc(n)
a := 0 ;
for d in numtheory[divisors](n) do
if isA002113(d) then
a := a+d ;
end if;
end do;
a ;
end proc:
seq(A088000(n), n=1..100) ; # R. J. Mathar, Sep 09 2015
MATHEMATICA
Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] == x &], {k, 86}] (* Jayanta Basu, Aug 12 2013 *)
PROG
(Python)
def ispal(n):
return n==int(str(n)[::-1])
def A088000(n):
s=0
for i in range(1, n+1):
if n%i==0 and ispal(i):
s+=i
return s
print([A088000(n) for n in range(1, 30)]) # Indranil Ghosh, Feb 10 2017
(PARI) a(n) = sumdiv(n, d, my(dd=digits(d)); if (Vecrev(dd) == dd, d)); \\ Michel Marcus, Apr 06 2020
CROSSREFS
Cf. A062687 (all divisors are palindromic), A087990 (number of palindromic divisors).
Sequence in context: A353783 A367466 A093811 * A284344 A168338 A034690
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Oct 14 2003
STATUS
approved