[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p-1 and p+1 are both divisible by cubes (other than 1).
9

%I #37 Sep 21 2024 17:58:43

%S 271,487,593,751,809,919,1249,1567,1783,1889,1999,2647,2663,2753,2969,

%T 3079,3511,3617,3727,3833,3943,4049,4159,4481,4591,4751,4801,5023,

%U 6857,6967,7937,8263,8369,9127,9343,10289,10313,10529,10639,11071,11177

%N Primes p such that p-1 and p+1 are both divisible by cubes (other than 1).

%H Robert Israel, <a href="/A086708/b086708.txt">Table of n, a(n) for n = 1..10000</a>

%F {p in A000040: p+1 in A046099 and p-1 in A046099}. - _R. J. Mathar_, Dec 08 2015

%F A089199 INTERSECT A089200. - _R. J. Mathar_, Dec 08 2015

%p isA086708 := proc(n)

%p if isprime(n) then

%p isA046099(n-1) and isA046099(n+1) ;

%p else

%p false;

%p end if;

%p end proc:

%p n := 1:

%p for c from 1 to 50000 do

%p if isA086708(c) then

%p printf("%d %d\n",n,c) ;

%p n := n+1 ;

%p end if;

%p end do: # _R. J. Mathar_, Dec 08 2015

%p Res:= NULL: count:= 0:

%p p:= 1:

%p while count < 100 do

%p p:= nextprime(p);

%p if max(seq(t[2],t=ifactors(p-1)[2]))>=3 and max(seq(t[2],t=ifactors(p+1)[2]))>=3 then

%p count:= count+1; Res:= Res, p;

%p fi

%p od:

%p Res; # _Robert Israel_, Jul 11 2018

%t f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=3&&f[p+1]>=3,AppendTo[lst,p]],{n,6!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Oct 03 2009 *)

%t dbcQ[p_]:=AnyTrue[Surd[#,3]&/@Rest[Divisors[p-1]],IntegerQ]&&AnyTrue[Surd[#,3]&/@Rest[ Divisors[ p+1]],IntegerQ]; Select[ Prime[Range[1500]],dbcQ] (* _Harvey P. Dale_, Sep 21 2024 *)

%o (PARI)

%o \\ Input no. of iterations n, power p and number to subtract and add k.

%o powerfreep4(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(!ispowerfree(x-k,p) && !ispowerfree(x+k,p), c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }

%o ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) } \\ _Cino Hilliard_, Dec 08 2003

%Y Cf. A162870 (subsequence).

%K nonn

%O 1,1

%A _Jason Earls_ and _Amarnath Murthy_, Jul 28 2003

%E Definition clarified by _Harvey P. Dale_, Sep 21 2024