[go: up one dir, main page]

login
A085121
Number of ways of writing n as the sum of three odd squares.
5
0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 72
OFFSET
0,4
COMMENTS
Number of ways of writing n as the sum of the squares of three odd numbers (see example). Equals 8*A008437 because each summand can be the square of either a positive or negative odd number, and there are three summands, thus 2^3 = 8. - Antti Karttunen & Michel Marcus, Jul 23 2018
LINKS
J. E. Jones [Lennard-Jones] and A. E. Ingham, On the calculation of certain crystal potential constants and on the cubic crystal of least energy, Proc. Royal Soc., A 107 (1925), 636-653 (see p. 650).
FORMULA
G.f.: (Sum_{n=-oo..oo} q^((2n+1)^2))^3.
EXAMPLE
a(3) = 8 because 3 = (+1)^2 + (+1)^2 + (+1)^2 = (-1)^2 + (+1)^2 + (+1)^2 = (+1)^2 + (-1)^2 + (+1)^2 = (+1)^2 + (+1)^2 + (-1)^2 = (-1)^2 + (-1)^2 + (+1)^2 = (-1)^2 + (+1)^2 + (-1)^2 = (+1)^2 + (-1)^2 + (-1)^2 = (-1)^2 + (-1)^2 + (-1)^2. - Antti Karttunen, Jul 23 2018
PROG
(PARI)
A008442(n) = if( n<1 || n%4!=1, 0, sumdiv(n, d, (d%4==1) - (d%4==3))); \\ From A008442.
A290081(n) = if(n%2, 0, A008442(n/2));
A008437(n) = if((n<3)||!(n%2), 0, my(s=0, k = sqrtint(n)); k -= ((1+k)%2); while(k>=1, s += A290081(n-(k*k)); k -= 2); (s));
A085121(n) = 8*A008437(n); \\ Antti Karttunen, Jul 22 2018
CROSSREFS
Cf. A005875, A008437. The nonzero coefficients give A005878.
Sequence in context: A353294 A127886 A270033 * A228634 A229659 A306756
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 25 2004
STATUS
approved