[go: up one dir, main page]

login
A073832
k between A001359(n) and A001359(n+1) such that A073830(k) is maximal.
3
4, 7, 13, 23, 37, 53, 67, 97, 103, 131, 139, 173, 181, 193, 223, 233, 263, 277, 307, 337, 409, 421, 457, 509, 563, 593, 613, 631, 653, 797, 811, 823, 853, 877, 1013, 1021, 1039, 1051, 1087, 1129, 1223, 1259, 1283, 1297, 1307, 1423, 1447, 1471, 1483, 1601
OFFSET
1,1
COMMENTS
A073830(a(n)) = A073831(n).
LINKS
MAPLE
A073832 := proc(n)
local k, kmx, a ;
kmx := 0 ;
a := A001359(n)+1 ;
for k from A001359(n)+1 to A001359(n+1)-1 do
if A073830(k) > kmx then
a := k ;
kmx := A073830(k) ;
end if;
end do:
a ;
end proc:
seq(A073832(n), n=1..50) ; # R. J. Mathar, Feb 21 2017
MATHEMATICA
f[n_] := Mod[4*((n - 1)! + 1) + n, n*(n + 2)];
pp = Select[Prime[Range[300]], PrimeQ[# + 2] & ];
a[n_] := MaximalBy[Range[pp[[n]], pp[[n + 1]]], f];
Array[a, Length[pp] - 1] // Flatten (* Jean-François Alcover, Feb 22 2018 *)
PROG
(Python)
from math import factorial
from itertools import islice, pairwise
from sympy import isprime, nextprime, primerange
def f(n): return (4*(factorial(n-1) + 1) + n)%(n*(n + 2))
def bgen(): # generator of A001359
p, q = 2, 3
while True:
if q - p == 2: yield p
p, q = q, nextprime(q)
def agen(): # generator of terms
for p, q in pairwise(bgen()):
yield max((f(k), k) for k in range(p+1, q))[1]
print(list(islice(agen(), 80))) # Michael S. Branicky, Aug 13 2024
CROSSREFS
Sequence in context: A298354 A139217 A038391 * A265160 A090854 A039694
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 12 2002
STATUS
approved