[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079559
Number of partitions of n into distinct parts of the form 2^j-1, j=1,2,....
56
1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1
OFFSET
0,1
COMMENTS
Differences of the Meta-Fibonacci sequence for s=0. - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
Fixed point of morphism 0-->0, 1-->110 - Joerg Arndt, Jun 07 2007
A006697(k) gives number of distinct subwords of length k, conjectured to be equal to A094913(k)+1. - M. F. Hasler, Dec 19 2007
Characteristic function for the range of A005187: a(A055938(n))=0; a(A005187(n))=1; if a(m)=1 then either a(m-1)=1 or a(m+1)=1. - Reinhard Zumkeller, Mar 18 2009
The number of zeros between successive pairs of ones in this sequence is A007814. - Franklin T. Adams-Watters, Oct 05 2011
Length of n-th run = abs(A088705) + 1. - Reinhard Zumkeller, Dec 11 2011
LINKS
Gary W. Adamson, Comments on A079559
Joerg Arndt, Matters Computational (The Fxtbook), section 1.26.5, Recursive generation and relation to a power series, page 74, figure 1.26-E and function A.
B. Jackson and F. Ruskey, Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes, Electronic Journal of Combinatorics, 13 (2006), R26.[alt source]
Thomas M. Lewis and Fabian Salinas, Optimal pebbling of complete binary trees and a meta-Fibonacci sequence, arXiv:2109.07328 [math.CO], 2021.
F. Ruskey and C. Deugau, The Combinatorics of Certain k-ary Meta-Fibonacci Sequences, JIS 12 (2009) 09.4.3. [This is a later version than that in the GenMetaFib.html link]
FORMULA
G.f.: Product_{n>=1} (1 + x^(2^n-1)).
a(n) = 1 if n=0, otherwise A043545(n+1)*a(n+1-A053644(n+1)). - Reinhard Zumkeller, Aug 19 2006
a(n) = p(n,1) with p(n,k) = p(n-k,2*k+1) + p(n,2*k+1) if k <= n, otherwise 0^n. - Reinhard Zumkeller, Mar 18 2009
Euler transform is sequence A111113 sequence offset -1. - Michael Somos, Aug 03 2009
G.f.: Product_{k>0} (1 - x^k)^-A111113(k+1). - Michael Somos, Aug 03 2009
a(n) = A108918(n+1) mod 2. - Joerg Arndt, Apr 06 2011
a(n) = A000035(A153000(n)), n >= 1. - Omar E. Pol, Nov 29 2009, Aug 06 2013
EXAMPLE
a(11)=1 because we have [7,3,1].
G.f. = 1 + x + x^3 + x^4 + x^7 + x^8 + x^10 + x^11 + x^15 + x^16 + x^18 + ...
From Omar E. Pol, Nov 30 2009: (Start)
The sequence, displayed as irregular triangle, in which rows length are powers of 2, begins:
1;
1,0;
1,1,0,0;
1,1,0,1,1,0,0,0;
1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0;
1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0,0;
1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0,1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0,0,0;
(End)
MAPLE
g:=product(1+x^(2^n-1), n=1..15): gser:=series(g, x=0, 110): seq(coeff(gser, x, n), n=0..104); # Emeric Deutsch, Apr 06 2006
d := n -> if n=1 then 1 else A046699(n)-A046699(n-1) fi; # Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
MATHEMATICA
row[1] = {1}; row[2] = {1, 0}; row[n_] := row[n] = row[n-1] /. 1 -> Sequence[1, 1, 0]; Table[row[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Jul 30 2012, after Omar E. Pol *)
CoefficientList[ Series[ Product[1 + x^(2^n - 1), {n, 6}], {x, 0, 104}], x] (* or *)
Nest[ Flatten[# /. {0 -> {0}, 1 -> {1, 1, 0}}] &, {1}, 6] (* Robert G. Wilson v, Sep 08 2014 *)
PROG
(PARI) w="1, "; for(i=1, 5, print1(w=concat([w, w, "0, "])))
(PARI) A079559(n, w=[1])=until(n<#w=concat([w, w, [0]]), ); w[n+1] \\ M. F. Hasler, Dec 19 2007
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, #binary(n+1), 1 + x^(2^k-1), 1 + x * O(x^n)), n))} /* Michael Somos, Aug 03 2009 */
(Haskell)
a079559 = p $ tail a000225_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-- Reinhard Zumkeller, Dec 11 2011
(Haskell)
a079559_list = 1 : f [1] where
f xs = ys ++ f ys where ys = init xs ++ [1] ++ tail xs ++ [0]
-- Reinhard Zumkeller, May 05 2015
(Python)
def a053644(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1)
def a043545(n):
x=bin(n)[2:]
return int(max(x)) - int(min(x))
l=[1]
for n in range(1, 101): l+=[a043545(n + 1)*l[n + 1 - a053644(n + 1)], ]
print(l) # Indranil Ghosh, Jun 11 2017
KEYWORD
nonn,nice
AUTHOR
Vladeta Jovovic, Jan 25 2003
EXTENSIONS
Edited by M. F. Hasler, Jan 03 2008
STATUS
approved